
Embedded IDE Link™ CC 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Embedded IDE Link™ CC User’s Guide
© COPYRIGHT 2002–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only New for Version 1.0 (Release 13)
October 2002 Online only Revised for Version 1.1
May 2003 Online only Revised for Version 1.2
September 2003 Online only Revised for Version 1.3 (Release 13SP1+)
June 2004 Online only Revised for Version 1.3.1 (Release 14)
October 2004 Online only Revised for Version 1.3.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.4 (Release 14SP1+)
March 2005 Online only Revised for Version 1.4.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4.2 (Release 14SP3)
March 2006 Online only Revised for Version 1.5 (Release 2006a)
April 2006 Online only Revised for Version 2.0 (Release 2006a+)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 3.0 (Release 2007a)
September 2007 Online only Revised for Version 3.1 (Release 2007b)
March 2008 Online only Revised for Version 3.2 (Release 2008a)
October 2008 Online only Revised for Version 3.3 (Release 2008b)

Contents

Getting Started

1
Product Overview . 1-2
Components of Embedded IDE Link CC Software 1-3
Automation Interface . 1-3
Project Generator . 1-4
Verification . 1-5
Product Features Supported for Each Processor Family . . 1-5

Configuration Information . 1-6

Requirements for Embedded IDE Link CC Software . . 1-10

Automation Interface
2

Getting Started with Automation Interface 2-2
Introducing the Automation Interface Tutorial 2-2
Selecting Your Processor . 2-7
Creating and Querying Objects for CCS IDE 2-9
Loading Files into CCS . 2-11
Working with Projects and Data . 2-13
Working with Embedded Objects . 2-19
Closing the Links or Cleaning Up CCS IDE 2-28

Getting Started with RTDX . 2-30
Introducing the Tutorial for Using RTDX 2-31
Creating the ticcs Objects . 2-36
Configuring Communications Channels 2-39
Running the Application . 2-41
Closing the Connections and Channels or Cleaning Up . . . 2-48
Listing the Functions for Embedded IDE Link CC
software . 2-52

v

Constructing ticcs Objects . 2-54
Example — Constructor for ticcs Objects 2-54

Properties and Property Values . 2-56
Setting and Retrieving Property Values 2-56
Setting Property Values Directly at Construction 2-57
Setting Property Values with set . 2-57
Retrieving Properties with get . 2-58
Direct Property Referencing to Set and Get Values 2-59

Overloaded Functions for ticcs Objects 2-61

ticcs Object Properties . 2-62
Quick Reference to ticcs Object Properties 2-62
Details About ticcs Object Properties 2-64

Project Generator

3
Introducing Project Generator . 3-2

Project Generation and Board Selection 3-3

About the CCSLinkLib Blockset . 3-5

Schedulers and Timing . 3-10
Timer-Based Versus Asynchronous Interrupt
Processing . 3-10

Synchronous Scheduling . 3-12
Asynchronous Scheduling . 3-13
Asynchronous Scheduler Examples 3-20
Uses for Asynchronous Scheduling 3-21
Multitasking Scheduler Examples . 3-23

Project Generator Tutorial . 3-37
Creating the Model . 3-38
Adding the Target Preferences Block to Your Model 3-38

vi Contents

Specifying Simulink Software Configuration Parameters for
Your Model . 3-41

Setting Real-Time Workshop Software Parameters for
TI Processors . 3-45

Setting Model Configuration Parameters 3-48
Target File Selection . 3-49
Build Process . 3-49
Custom Storage Class . 3-50
Report Options . 3-50
Debug Pane Parameters . 3-51
Optimization Pane Parameters . 3-52
Embedded IDE Link CC Pane Parameters 3-54
Embedded IDE Link CC Default Project Configuration —
custom . 3-59

processor Function Library and Embedded IDE Link
CC . 3-61
TFL Replacement Functions . 3-61
Enabling TFL for Code Generation 3-61

Model Reference and Embedded IDE Link CC 3-63
How Model Reference Works . 3-63
Using Model Reference with Embedded IDE Link CC 3-64
Configuring processors to Use Model Reference 3-66

Verification
4

What Is Verification? . 4-2

Using Processor in the Loop . 4-3
Processor-in-the-Loop Overview . 4-3
PIL Block . 4-6
PIL Issues . 4-6
Creating and Using PIL Blocks . 4-9

vii

Real-Time Execution Profiling . 4-11
Overview . 4-11
Profiling Execution by Tasks . 4-12
Profiling Execution By Subsystems 4-14

System Stack Profiling . 4-19
Overview . 4-19
Profiling System Stack Use . 4-21

Exporting Digital Filters From FDATool to CCS
IDE

5
Introducing FDATool . 5-2

Guidelines on Exporting Filters from FDATool to Code
Composer Studio IDE . 5-3
Selecting the Export Mode . 5-4
Cautions Regarding Writing Directly to Memory 5-5
Variables and Memory Necessary for Filter Export 5-6
Selecting the Export Data Type . 5-8

Tutorial — Exporting Filters from FDATool to CCS
IDE . 5-10
Descriptions of the Two Tutorial Tasks 5-10
Setting Up for the Tutorial . 5-10
Task 1 — Export Filter by Generating an ANSI C Header
File . 5-11

Task 2 — Export Filter by Writing Directly to Processor
Memory . 5-18

Function Reference
6

Operations on Objects for CCS IDE 6-2

viii Contents

Operations on Objects for RTDX . 6-4

Data Manipulation . 6-5

Hardware-in-the-Loop Processing 6-5

Functions — Alphabetical List

7

Block Reference
8

C280x/C28x3x DSP Chip Support (ccslinklib_c280x) . . . 8-2

C281x DSP Chip Support (ccslinklib_c281x) 8-2

C5xxx DSP Chip Support (ccslinklib_c5xxx) 8-2

C6xxx DSP Chip Support (ccslinklib_c6xxx) 8-3

Target Preferences (ccslinklib_tgtpref) 8-3

ix

Blocks — Alphabetical List

9

Embedded IDE Link CC Configuration
Parameters

10
Embedded IDE Link CC Pane . 10-2
Embedded IDE Link CC Overview 10-4
Export IDE link handle to base workspace 10-5
IDE link handle name . 10-7
Profile real-time execution . 10-8
Profile by . 10-10
Number of profiling samples to collect 10-12
Inline run-time library functions . 10-14
Project options . 10-16
Compiler options string . 10-18
Linker options string . 10-20
System stack size (MAUs) . 10-22
Build action . 10-23
Interrupt overrun notification method 10-26
Interrupt overrun notification function 10-28
PIL block action . 10-29
Maximum time allowed to build project (s) 10-31
Maximum time to complete IDE operations (s) 10-33

Supported Hardware

A
Supported Platforms for Embedded IDE Link CC A-2
Supported Hardware and Simulators A-2
Product Features Supported by Each Processor or
Family . A-4

OMAP Coemulation Support . A-7
Custom Hardware Support . A-8

Supported Versions of Code Composer Studio A-9

x Contents

Reported Limitations and Tips

B
Reported Issues Using Embedded IDE Link CC B-2
Function Call Support for Different Compiler Options . . . B-3
Function Calls on Functions That Use Global Variables . . B-4
Demonstration Programs Do Not Run Properly Without
Correct GEL Files . B-5

Issues Using USB-Based RTDX Emulators and the C6416
DSK and C6713 DSK . B-6

Error Accessing type Property of ticcs Object Having Size
Greater Then 1 . B-7

Changing the represent Property of an Object B-8
Changing Values of Local Variables Does Not Take
Effect . B-9

Code Composer Studio Cannot Find a File After You Halt a
Program . B-9

C54x XPC Register Can Be Modified Only Through the PC
Register . B-11

Working with More Than One Installed Version of Code
Composer Studio . B-11

Changing CCS Versions During a MATLAB Session B-12
createobj and address Return Inconsistent Page Information
on C5xxx processors . B-12

MATLAB Hangs When Code Composer Studio Cannot Find
a Board . B-14

Different Read Techniques Appear to Return Different
Values . B-16

Using Function Call with C28x Processors B-17
RTDX Demos Do Not Run on C6727 PADK B-17

Objects in Embedded IDE Link CC

C
Introduction to Objects . C-3
Some Object-Oriented Programming Terms C-5
About the Relationships Between Objects C-9
Class Diagrams for Embedded IDE Link CC C-11

xi

Numeric Objects — Their Methods and Properties C-15
Properties of Numeric Objects . C-15
Methods of Numeric Objects . C-17

Bitfield Objects — Their Methods and Properties C-18
Properties of Bitfield Objects . C-18
Methods of Bitfield Objects . C-20

Enum Objects — Their Methods and Properties C-21
Properties of Enum Objects . C-21
Methods of Enum Objects . C-23

Pointer Objects — Their Methods and Properties C-24
Properties of Pointer Objects . C-24
Methods of Pointer Objects . C-25

String Objects — Their Methods and Properties C-27
Properties of String Objects . C-27
Methods of String Objects . C-29

Rnumeric Objects — Their Methods and Properties . . C-30
Properties of Rnumeric Objects . C-30
Methods of Rnumeric Objects . C-32

Renum Objects — Their Methods and Properties C-33
Properties of Renum Objects . C-33
Methods of Renum Objects . C-35

Rpointer Objects — Their Methods and Properties . . . C-36
Properties of Rpointer Objects . C-36
Methods of Rpointer Objects . C-38

Rstring Objects — Their Methods and Properties C-39
Properties of Rstring Objects . C-39
Methods of Rstring Objects . C-41

Function Objects — Their Methods and Properties . . . C-42
Properties of Function Objects . C-42
Methods of Function Objects . C-43

xii Contents

Structure Objects — Their Methods and Properties . . . C-45
Properties of Structure Objects . C-45
Methods of Structure Objects . C-46
Working with Structure Objects . C-47

Type Objects — Their Methods and Properties C-51
Properties of Type Objects . C-51
Methods of Type Objects . C-52

Constructing Objects That Access Bitfields C-53

Creating function Objects . C-55
When to Use declare to Provide the Function
Declaration . C-56

Differences Between Objects for Library Functions and C
Functions . C-57

Examples of Creating Function Objects C-58

Creating Type Objects . C-73
Working with Type Definitions in Projects C-73

Tutorial — Using function Objects and Function
Calls . C-76
Introducing the Tutorial . C-77
To Run the Hardware-In-The-Loop Tutorial C-80
Select Your Processor and Load the Tutorial Project C-81
Initialize the Embedded C Variables and Use read and
write . C-85

Use read, write, cast, and convert with Objects C-89
Construct a function Object . C-94
Use Methods That Work with Function Objects C-96
Construct Different Objects and Work with Them C-101
Close The Tutorial and Clean Up . C-106

Managing Custom Data Types with the Data Type
Manager . C-108
Adding Custom Type Definitions to MATLAB C-110

Reference for the Properties of Embedded Objects . . . C-119
Property Reference Format and Contents C-119
Functions . C-120

xiii

Index

xiv Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Configuration Information” on page 1-6

• “Requirements for Embedded IDE Link CC Software” on page 1-10

1 Getting Started

Product Overview

In this section...

“Components of Embedded IDE Link CC Software” on page 1-3
“Automation Interface” on page 1-3
“Project Generator” on page 1-4
“Verification” on page 1-5
“Product Features Supported for Each Processor Family” on page 1-5

Embedded IDE Link™ CC software enables you to use MATLAB® functions
to communicate with Code Composer Studio™ software and with information
stored in memory and registers on a processor. With the ticcs objects, you
can transfer information to and from Code Composer Studio software and
with the embedded objects you get information about data and functions
stored in your signal processor memory and registers, as well as information
about functions in your project.

Embedded IDE Link CC lets you build, test, and verify automatically
generated code using MATLAB, Simulink®, Real-Time Workshop®, and the
Code Composer Studio integrated development environment. Embedded IDE
Link CC makes it easy to verify code executing within the Code Composer
Studio software environment using a model in Simulink software. This
processor-in-the-loop testing environment uses code automatically generated
from Simulink models by Real-Time Workshop® Embedded Coder™ software.
A wide range of Texas Instruments DSPs are supported:

• TI’s C2000™

• TI’s C5000™

• TI’s C6000™

With Embedded IDE Link CC, you can use MATLAB software and Simulink
software to interactively analyze, profile and debug processor-specific code
execution behavior within CCS. In this way, Embedded IDE Link CC
automates deployment of the complete embedded software application and
makes it easy for you to assess possible differences between the model
simulation and processor code execution results.

1-2

Product Overview

Embedded IDE Link CC consists of these components:

• Project Generator—generate C code from Simulink models

• Automation Interface—use functions in the MATLAB command window to
access and manipulate data and files in the IDE and on the processor

• Verification—verify how your programs run on your processor

The following sections summarize these components and features:

Note Embedded IDE Link CC uses objects. You work with them the way you
use all MATLAB objects. You can set and get their properties, and use their
methods to change them or manipulate them and the IDE to which they refer.

With Embedded IDE Link CC, you create two kinds of objects:

• Objects that connect MATLAB software to Code Composer Studio software.
For information about using objects, refer to “Requirements for Embedded
IDE Link CC Software” on page 1-10.

• Objects you create that provide access to data and functions in your
project in Code Composer Studio software and on your processor. The
objects let you use the embedded objects to access your processor. Refer
to“Introduction to Objects” on page C-3 for more information about using
the embedded objects, their properties, and their methods.

Components of Embedded IDE Link CC Software
The next sections describe briefly the components of Embedded IDE Link
CC software.

Automation Interface
The automation interface component is a collection of methods that use the
Code Composer Studio API to communicate between MATLAB software and
Code Composer Studio. With the interface, you can do the following:

1-3

1 Getting Started

• Automate complex tasks in the development environment by writing
MATLAB software scripts to communicate with the IDE, or debug and
analyze interactively in a live MATLAB software session.

• Automate debugging by executing commands from the powerful Code
Composer Studio software command language.

• Exchange data between MATLAB software and the processor running
in Code Composer Studio software.

• Set breakpoints, step through code, set parameters and retrieve profiling
reports.

• Automate project creation, including adding source files, include paths, and
preprocessor defines.

• Configure batch building of projects.

• Debug projects and code.

• Execute API Library commands.

The automation interface provides an application program interface (API)
between MATLAB software and Code Composer Studio. Using the API, you
can create new projects, open projects, transfer data to and from memory on
the processor, add files to projects, and debug your code.

Project Generator
The Project Generator component is a collection of methods that use the Code
Composer Studio API to create projects in Code Composer Studio and generate
code with Real-Time Workshop. With the interface, you can do the following:

• Automated project-based build process

Automatically create and build projects for code generated by Real-Time
Workshop or Real-Time Workshop Embedded Coder.

• Customize code generation

Use Embedded IDE Link CC with any Real-Time Workshop system target
file (STF) to generate processor-specific and optimized code.

• Customize the build process

• Automate code download and debugging

1-4

Product Overview

Rapidly and effortlessly debug generated code in the Code Composer
Studio software debugger, using either the instruction set simulator or
real hardware.

• Create and build CCS projects from Simulink software models. Project
Generator uses Real-Time Workshop software or Real-Time Workshop
Embedded Coder software to build projects that work with C2000™
software, C5000™ software, and C6000™ software processors.

• Highly customized code generation with the system target file
ccslink_ert.tlc and ccslink_grt.tlc that enable you to use the
Configuration Parameters in your model to customize your generated code.

• Automate the process of building and downloading your code to the
processor, and running the process on your hardware.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link CC combine to provide
the following verification tools for you to apply as you develop your code:

Processor in the Loop Cosimulation
Use cosimulation techniques to verify generated code running in an
instruction set simulator or real processor environment.

Execution Profiling
Gather execution profiling timing measurements with Code Composer
Studio instruction set simulator to establish the timing requirements of
your algorithm.

Product Features Supported for Each Processor
Family
Within the collection of processors that Embedded IDE Link CC supports,
some subcomponents of the product do not apply. For the complete list of
which features work with each processor or family, such as the C24xx or
C67xx, refer to “Product Features Supported by Each Processor or Family”
on page A-4.

1-5

1 Getting Started

Configuration Information
To determine whether Embedded IDE Link CC is installed on your system,
type this command at the MATLAB software prompt.

ver

When you enter this command, MATLAB software displays a list of the
installed products. Look for a line similar to the following:

Embedded IDE Link CC Version 3.x (Release Specifier)

To get a bit more information about the software, such as the functions
provided and where to find demos and help, enter the following command at
the prompt:

help ticcs

Embedded IDE Link CC

Version 3.1 (R2007b Prerelease) DD-MMM-YYYY

==============================

Automation Interface Component

==============================

Debug Subcomponent

ticcs - Create TICCS object(s).

ccsboardinfo - Query the CCS Setup utility for board info.

Methods for TICCS Class

ccsdebug/add - Place a file in the current CCS project.

ccsdebug/activate - Cause the specified file to become active in CCS.

ccsdebug/address - Return the address value of specified processor symbol.

ccsdebug/animate - Run application until breakpoint is reached.

ccsdebug/build - Build a CCS project.

ccsdebug/cd - Change current working directory.

ccsdebug/dir - List CCS working directory.

ccsdebug/disp - Display properties of a TICCS object.

1-6

Configuration Information

ccsdebug/display - Display properties of a TICCS object.

ccsdebug/halt - Immediately terminate execution of the processor.

ccsdebug/info - Return information about the processor.

ccsdebug/insert - Add a debug point into CCS.

ccsdebug/isreadable - Check if the specified memory block can be read.

ccsdebug/isrtdxcapable - Check if the processor has RTDX capability.

ccsdebug/isrunning - Check if the processor is executing.

ccsdebug/isvisible - Check if the CCS window is open.

ccsdebug/iswritable - Check if the specified memory block can be written.

ccsdebug/list - Return variable, function, data type, or project information.

ccsdebug/load - Transfer a program file or a GEL file to the processor.

ccsdebug/new - Create an empty file in CCS.

ccsdebug/open - Load a file into the CCS IDE.

ccsdebug/profile - Obtain DSP/BIOS statistics on current program execution.

ccsdebug/read - Retrieve a block of data from the processor's memory.

ccsdebug/regread - Return the value in the specified processor register.

ccsdebug/regwrite - Place passed value into the specified processor register.

ccsdebug/reload - Repeat load of the most recently loaded program file.

ccsdebug/remove - Remove a file from the active CCS project.

- Remove a debug point from CCS.

ccsdebug/reset - Initiate software reset of board.

ccsdebug/restart - Restore the processor to the program entry point.

ccsdebug/run - Initiate execution of processor.

ccsdebug/save - Save CCS file to disk.

ccsdebug/symbol - Read the processor's entire symbol table.

ccsdebug/visible - Set the visibility state of the CCS window.

ccsdebug/write - Write a block of data into the processor's memory.

===========

Demos

===========

In MATLAB, go to

Start -> Links and processors -> Embedded IDE Link CC -> Demos

Supported Code Composer Studio(tm) Version: 3.3

For questions, go to Embedded IDE Link CC FAQ.

See also ccsdemos

1-7

1 Getting Started

If you do not see the listing, or MATLAB software does not recognize the
command, you need to install Embedded IDE Link CC. Without the software,
you cannot use MATLAB software with the objects to communicate with CCS.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that CCS is installed on your machine and has at least one board
configured, enter

ccsboardinfo

at the MATLAB software command line. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about any boards, open
your CCS installation and use the Setup Utility in CCS to configure at least
one board.

As a final test, start CCS to ensure that it starts up successfully. For
Embedded IDE Link CC to operate with CCS, the CCS IDE must be able to
run on its own.

Embedded IDE Link CC uses objects to create:

• Connections to the Code Composer Studio Integrated Development
Environment (CCS IDE)

• Connections to the RTDX™ (RTDX) interface. This object is a subset of the
object that refers to the CCS IDE.

1-8

http://www.mathworks.com/products/ccslink/requirements.html

Configuration Information

Concepts to know about the objects in this toolbox are covered in these
sections:

• Constructing Objects

• Properties and Property Values

• Setting and Retrieving Property Values

• Setting Property Values Directly at Construction

• Setting Property Values with set

• Setting Property Values with set

• Direct Property Referencing to Set and Get Values

• Overloaded Functions for Links

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB software.

Many of the objects use COM server features to create handles for working
with the objects. Refer to your MATLAB documentation for more information
about COM as used by MATLAB software.

1-9

1 Getting Started

Requirements for Embedded IDE Link CC Software
For detailed information about the software and hardware required to use
Embedded IDE Link CC software, refer to the System Requirements area for
the product on the MathWorks Web site — http://www.mathworks.com.

For information about the hardware that the software supports, refer to the
Supported Hardware area for the product on the MathWorks Web site —
http://www.mathworks.com.

1-10

http://www.mathworks.com
http://www.mathworks.com/products/ccslink/supportedio.html

2

Automation Interface

• “Getting Started with Automation Interface” on page 2-2

• “Getting Started with RTDX” on page 2-30

• “Constructing ticcs Objects” on page 2-54

• “Properties and Property Values” on page 2-56

• “Overloaded Functions for ticcs Objects” on page 2-61

• “ticcs Object Properties” on page 2-62

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2
“Selecting Your Processor” on page 2-7
“Creating and Querying Objects for CCS IDE” on page 2-9
“Loading Files into CCS” on page 2-11
“Working with Projects and Data” on page 2-13
“Working with Embedded Objects” on page 2-19
“Closing the Links or Cleaning Up CCS IDE” on page 2-28

Introducing the Automation Interface Tutorial
Embedded IDE Link CC provides a connection between MATLAB software
and a processor in CCS. You can use objects to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you while you debug and develop your application.
Another possible use for automation is creating MATLAB scripts that you
use to verify and test algorithms that run in their final implementation on
your production processor.

Before using the functions available with the objects, you must select a
processor to be your processor because any object you create is specific to
a designated processor and a designated instance of CCS IDE. Selecting
a processor is only necessary for multiprocessor boards or multiple board
configurations of CCS.

When you have only one board with a single processor, the object defaults to
the existing processor. For the objects, the simulator counts as a board; if you
have both a board and a simulator that CCS recognizes, you must specify
the processor explicitly.

To get you started using objects for CCS IDE software, Embedded IDE Link
CC includes a tutorial that introduces you to working with data and files. As
you work through this tutorial, you perform the following tasks that step you
through creating and using objects for CCS IDE:

2-2

Getting Started with Automation Interface

1 Select your processor.

2 Create and query objects to CCS IDE.

3 Use MATLAB software to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB software.

5 Close the connections you opened to CCS IDE.

The tutorial provides a working process (a workflow) for using Embedded IDE
Link CC and your signal processing programs to develop programs for a range
of Texas Instruments™ processors.

During this tutorial, you load and run a digital signal processing application
on a processor you select. The tutorial demonstrates both writing to memory
and reading from memory in the “Working with Links and Data” portion of
the tutorial.

You can use the read and write methods, as described in this tutorial, to read
and write data to and from your processor.

The tutorial covers the object methods and functions for Embedded IDE Link
CC. The functions listed in the first table apply to CCS IDE independent of
the objects — you do not need an object to use these functions. The methods
listed in the second and third table requires a ticcs object that you use in the
method syntax:

Functions for Working With Embedded IDE Link CC
The following functions do not require a ticcs object as an input argument:

Function Description

ccsboardinfo Return information about the boards that CCS
IDE recognizes as installed on your PC.

2-3

2 Automation Interface

Function Description

clear Remove a specific object to CCS IDE or remove
all existing objects.

ticcs Construct an object to communicate with
CCS IDE. When you construct the object you
specify the processor board and processor.

Methods for Working with ticcs Objects in Embedded IDE Link
CC software
The methods in the following table require a ticcs object as an input
argument:

Method Description

address Return the address and page for an
entry in the symbol table in CCS
IDE.

display Display the properties of an object to
CCS IDE and RTDX.

halt Terminate execution of a process
running on the processor.

info Return information about the
processor or information about open
RTDX channels.

isrtdxcapable Test whether your processor
supports RTDX communications.

isrunning Test whether the processor is
executing a process.

read Retrieve data from memory on the
processor.

restart Restore the program counter (PC)
to the entry point for the current
program.

2-4

Getting Started with Automation Interface

Method Description

run Execute the program loaded on the
processor.

visible Set whether CCS IDE window is
visible on the desktop while CCS
IDE is running.

write Write data to memory on the
processor.

Embedded IDE Link CC Methods for Embedded Objects
The methods in the following table enable you to manipulate programs and
memory with an embedded object:

Method Description

cast Create a new object with a different
datatype (the represent property)
from an object in Embedded IDE
Link CC. Demonstrated with a
numeric object.

convert Change the represent property
for an object from one datatype
to another. Demonstrated with a
numeric object.

getmember Return an object that accesses
a single field from a structure.
Demonstrated with a structure
object.

list Return various information listings
from Code Composer Studio
software.

2-5

2 Automation Interface

Method Description

read Read the information at the location
accessed by an object into MATLAB
software as numeric values.
Demonstrated with a numeric,
string, structure, and enumerated
objects.

readnumeric Return the numeric equivalent of
data at the location. Accessed by
an object. Demonstrated with an
enumerated object.

write Write to the location referenced
by an object. Demonstrated with
numeric, string, structure, and
enumerated objects.

Running Code Composer Studio Software on Your Desktop
— Visibility
When you create a ticcs object , Embedded IDE Link CC starts CCS in the
background.

When CCS IDE is running in the background, it does not appear on your
desktop, in your task bar, or on the Applications page in the Task Manager.
It does appear as a process, cc_app.exe, on the Processes tab in Microsoft®
Windows Task Manager.

You can make the CCS IDE visible with the function visible. The function
isvisible returns the status of the IDE—whether it is visible on your
desktop. To close the IDE when it is not visible and MATLAB software is not
running, use the Processes tab in Microsoft Windows Task Manager and
look for cc_app.exe.

If a link to CCS IDE exists when you close CCS, the application does not close.
Microsoft Windows software moves it to the background (it becomes invisible).
Only after you clear all links to CCS IDE, or close MATLAB software, does
closing CCS IDE unload the application. You can see if CCS IDE is running in
the background by checking in the Microsoft Windows Task Manager. When

2-6

Getting Started with Automation Interface

CCS IDE is running, the entry cc_app.exe appears in the Image Name list
on the Processes tab.

When you close MATLAB software while CCS IDE is not visible, MATLAB
software closes CCS if it launched the IDE. This happens because the
operating system treats CCS as a subprocess in MATLAB software when CCS
is not visible. Having MATLAB software close the invisible IDE when you
close MATLAB software prevents CCS from remaining open. You do not need
to close it using Microsoft Windows Task Manager.

If CCS IDE is not visible when you open MATLAB software, closing MATLAB
software leaves CCS IDE running in an invisible state. MATLAB software
leaves CCS IDE in the visibility and operating state in which it finds it.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB software
command line or entering the functions as described in the following tutorial
sections.

To run the tutorial in MATLAB software, click run ccstutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next portion of the lesson. The interactive tutorial covers the same
information provided by the following tutorial sections. You can view the
tutorial M-file used here by clicking ccstutorial.m.

Selecting Your Processor
Links for CCS IDE provides two tools for selecting a board and processor
in multiprocessor configurations. One is a command line tool called
ccsboardinfo which prints a list of the available boards and processors.
So that you can use this function in a script, ccsboardinfo can return
a MATLAB software structure that you use when you want your script to
select a board without your help.

Note The board and processor you select is used throughout the tutorial.

2-7

2 Automation Interface

1 To see a list of the boards and processors installed on your PC, enter the
following command at the MATLAB software prompt:

ccsboardinfo

MATLAB software returns a list that shows you all the boards and
processors that CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a board, enter

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog box similar to the following.
Note that some entries vary depending on your board set.

3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular processor. When you create the object for CCS IDE in the
next section of this tutorial, the selected board and processor become the
processor of the object.

4 Click Done to accept your board and processor selection and close the
dialog box.

boardnum and procnum now represent the Board name and Processor
name you selected — boardnum = 1 and procnum = 0

2-8

Getting Started with Automation Interface

Creating and Querying Objects for CCS IDE
In this tutorial section, you create the connection between MATLAB software
and CCS IDE. This connection, or object, is a MATLAB software object that
you save as variable cc.

You use function ticcs to create objects. When you create objects, ticcs
input arguments let you define other object property values, such as the global
timeout. Refer to the ticcs reference documentation for more information
on these input arguments.

Use the generated object cc to direct actions to your processor. In the
following tasks, cc appears in all function syntax that interact with CCS
IDE and the processor:

1 Create an object that refers to your selected board and processor. Enter the
following command at the prompt.

cc=ticcs('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio software appear briefly when you call ticcs. If CCS
IDE was not running before you created the new object, CCS launches
and runs in the background.

2 Enter visible(cc,1) to force CCS IDE to be visible on your desktop.

Usually, you need to interact with Code Composer Studio software while
you develop your application. The first function in this tutorial, visible,
controls the state of CCS on your desktop. visible accepts Boolean inputs
that make CCS either visible on your desktop (input to visible = 1) or
invisible on your desktop (input to visible = 0). For this tutorial, use
visible to set the CCS IDE visibility to 1.

3 Next, enter display(cc) at the prompt to see the status information.

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0

2-9

2 Automation Interface

Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Embedded IDE Link CC provides three methods to read the status of a
board and processor:

• info— Return a structure of testable board conditions.

• display — Print information about the processor.

• isrunning— Return the state (running or halted) of the processor.

• isrtdxcapable— Return whether the hardware supports RTDX.

4 Type linkinfo = info(cc).

The cc link status information provides information about the hardware as
follows:

linkinfo =

boardname: 'C6711 Device Simulator'
procname: 'CPU_1'

isbigendian: 0
family: 320

subfamily: 103
revfamily: 11

processortype: 'simulator'
revsilicon: 0

timeout: 10

5 Verify that the processor is running by entering

runstatus = isrunning(cc)

MATLAB software responds, indicating that the processor is stopped, as
follows:

runstatus =

0

2-10

Getting Started with Automation Interface

6 At last, verify that the processor supports RTDX communications by
entering

usesrtdx = isrtdxcapable(cc)
usesrtdx =

1

Loading Files into CCS
You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its type,
and whether CCS IDE was visible. Next, the processor needs something to do.

In this part of the tutorial, you load the executable code for the processor CPU
in CCS IDE. Embedded IDE Link CC includes a CCS project file. Through the
next tasks in the tutorial, you locate the tutorial project file and load it into
CCS IDE. The openmethod directs CCS to load a project file or workspace file.

Note CCS has its own workspace and workspace files that are quite
different from MATLAB software workspace files and the MATLAB software
workspace. Remember to monitor both workspaces.

After you have executable code running on your processor, you can exchange
data blocks with it. Exchanging data is the purpose of the objects provided by
Embedded IDE Link CC software.

1 To load the appropriate project file to your processor, enter the following
command at the MATLAB software prompt. getdemoproject is a
specialized function for loading Embedded IDE Link CC demo files. It is
not supported as a standard Embedded IDE Link CC function.

demopjt =

isLibProj: 0

TemplateProject: 'C:\Temp\LinkForCCSDemos_v3.2\template\c6x\c67x.pjt'

DemoDir: 'C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x'

ProjectFile: 'C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x\ccstut.pjt'

2-11

2 Automation Interface

ProgramFile: 'C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x\ccstut.out'

SrcFile: {2x1 cell}

LibFile: ''

CmdFile: {'$matlabroot\matlab\toolbox\ccslink\ccsdemos\shared\c6x\c6x.cmd'}

HdrFile: ''

BuildOpts: [1x1 struct]

ProjectAction: 'rebuildProg'

RebuildDemo: 1

demopjt.ProjectFile

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c67x

Your paths may be different if you use a different processor. Note where
the software stored the demo files on your machine. In general, Embedded
IDE Link CC software stores the demo project files in

LinkforCCS_vproduct_version

Embedded IDE Link CC creates this directory in a location where you have
write permission. There are two locations where Embedded IDE Link CC
software tries to create the demo directory, in the following order:

a In a temporary directory on the C drive, such as C:\temp\.

b If Embedded IDE Link CC software cannot use the temp directory, you
see a dialog box that asks you to select a location to store the demos.

2 Next, build the processor executable file in CCS IDE. Select Project
> Build from the menu bar in CCS IDE.

You may get an error related to one or more missing .lib files. If you
installed CCS IDE in a directory other than the default installation
directory, browse in your installation directory to find the missing file or

2-12

Getting Started with Automation Interface

files. Refer to the path in the error message as an indicator of where to
find the missing files.

3 Enter load(cc,'projectname.out') to load the processor execution file,
where projectname is the tutorial you chose, such as ccstut_67x.

4 You have a loaded program file and associated symbol table. To determine
the memory address of the global symbol ddat, enter the following
command at the prompt:

ddata = address(cc,'ddat')
ddata =

1.0e+009 *

2.1475 0

Your values for ddata may be different depending on your processor.

Note The symbol table is available after you load the program file into the
processor, not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, enter the following command at the prompt:

dec2hex(ddata)

MATLAB software displays the following response, where the memory page
is 0x00000000 and the address is 0x80000010.

ans =

80000010
00000000

Working with Projects and Data
After you load the processor code, you can use Embedded IDE Link CC
functions to examine and modify data values in the processor.

2-13

2 Automation Interface

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. Embedded IDE Link CC ships this
file with the tutorial and includes it in the project. ccstut.c has two global
data arrays — ddat and idat— that you declare and initialize in the source
code. You use the functions read and write to access these processor memory
arrays from MATLAB software.

Embedded IDE Link CC provides three functions to control processor
execution — run, halt, and restart.

To demonstrate these commands, use CCS IDE to add a breakpoint to line 64
of cctut.c. Line 64 is

printf("Embedded IDE Link CC: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to your Code
Composer Studio User’s Guide from Texas Instruments. Then proceed with
the tutorial:

1 To demonstrate the new functions, try the following functions.

halt(cc) % Halt the processor.

restart(cc) % Reset the PC to start of program.

run(cc,'runtohalt',30); % Wait for program execution to stop at

% breakpoint (timeout = 30 seconds).

When you switch to viewing CCS IDE, you see that your program stopped
at the breakpoint you inserted on line 64, and the program printed the
following messages in the CCS IDE Stdout tab. Nothing prints in the
MATLAB command window:

Embedded IDE Link CC: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = -1-508-647-7000 (call me anytime!)

2 Before you restart your program (currently stopped at line 64), change
some values in memory. Perform one of the following procedures based on
your processor.

C5xxx processor family— Enter the following functions to demonstrate
the read and write functions.

2-14

Getting Started with Automation Interface

a Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(cc,address(cc,'idat'),'int8',4)

idatv =

1 0 -4 1

c You can change the values stored in ddat by entering
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter

write(cc,address(cc,'idat'),int32([1:4]))

Here you write the data to the processor as 32-bit integers (convenient
for representing phone numbers, for example).

e Start the program running again by entering the following command:

run(cc,'runtohalt',30);

2-15

2 Automation Interface

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Next, read those new values back into MATLAB software.

f Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command at the prompt:

idatv = read(cc,address(cc,'idat'),'int16',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(cc);

C6xxx processor family— Enter the following commands to demonstrate
the read and write functions.

a Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(cc,address(cc,'idat'),'int16',4).

MATLAB software responds

idatv =

2-16

Getting Started with Automation Interface

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(cc,address(cc,'idat'),'int8',4)

idatv =

1 0 -4 1

c Change the values stored in ddat by entering
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter the following command:

write(cc,address(cc,'idat'),int32([1:4]))

In this command, you write the data to the processor as 32-bit integers
(convenient for representing phone numbers, for example).

e Next, start the program running again by entering the following
command:

run(cc,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Read those new values back into MATLAB software.

f Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

Verify that ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command:

idatv = read(cc,address(cc,'idat'),'int32',4)

2-17

2 Automation Interface

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(cc);

3 Embedded IDE Link CC offers more functions for reading and writing
data to your processor. These functions let you read and write data to
the processor registers: regread and regwrite. They let you change
variable values on the processor in real time. The functions behave slightly
differently depending on your processor. Select the appropriate procedure
for your processor to demonstrate regread and regwrite.

C5xxx processor family — Most registers are memory-mapped and
available using read and write. However, the PC register is not memory
mapped. To access this register, use the special functions — regread
and regwrite. The following commands demonstrate how to use these
functions to read and write to the PC register.

a To read the value stored in register PC, enter the following command
at the prompt to indicate to MATLAB software the data type to read.
The input string binary indicates that the PC register contains a value
stored as an unsigned binary integer.

cc.regread('PC','binary')

MATLAB software displays

ans =

33824

b To write a new value to the PC register, enter the following command.
This time, binary as an input argument tells MATLAB software to write
the value to the processor as an unsigned binary integer. Notice that you
used hex2dec to convert the hexadecimal string to decimal.

cc.regwrite('PC',hex2dec('100'),'binary')

2-18

Getting Started with Automation Interface

c Verify that the PC register contains the value you wrote.

cc.regread('PC','binary')

C6xxx processor family — regread and regwrite let you access the
processor registers directly. Enter the following commands to get data into
and out of the A0 and B2 registers on your processor.

a To retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Enter the following command:

treg = cc.regread('A0','2scomp');

treg contains the two’s complement representation of the value in A0.

b To retrieve the value in register B2 as an unsigned binary integer, enter
the following command:

cc.regread('B2','binary');

c Next, enter the following command to use regwrite to put the value in
treg into register A2.

cc.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View > CPU Registers > Core Registers from the CCS IDE menu
bar to see a listing of the processor registers.

Working with Embedded Objects
Direct access to the memory on your processor DSP, as provided by the
links in Embedded IDE Link CC, can be a powerful tool for developing
and troubleshooting your digital signal processing applications. But for
programming in C, it might be more valuable to work with memory and data
in ways that are consistent with the C variables embedded in your programs.

Embedded IDE Link CC implements this access and manipulation capability
by using MATLAB software objects (called embedded objects in this guide)
that access and represent variables and data embedded in your project.
Various methods that compose Embedded IDE Link CC, such as createobj,
convert, and write, help you create the embedded objects you use to work

2-19

2 Automation Interface

with your data in DSP memory and registers, and let you manipulate the data
in MATLAB software and in your code.

The following tutorial sections introduce some of the access and manipulation
methods and use them with objects and data.

Method list generates information for you about an embedded variable in
the symbol table. An even more useful function is createobj that creates
a MATLAB software object that represents a C variable in the symbol table
in CCS. Working with the object that createobj returns, you can read the
entire contents of a variable, or one or more elements of the variable when
the variable is an array or structure.

From the beginning of this tutorial you have used the link object cc with all
of the functions. cc represents the path to communicate with a particular
processor in CCS. For the remainder of this tutorial you work with a variety
of functions that use, not the link object cc, but other objects, such as numeric
or structure objects, that represent embedded objects in CCS. These new
functions use the object names as the first input argument to the function (the
way you used cc). For example, when you create the object cvar in step 4 that
follows, cvar represents the embedded variable idat.

To begin, restart the program and use list to get some information about
a variable (an embedded object) in CCS.

Using list

1 To restart the program in CCS, enter the following command:

restart(cc)

This resets the program counter to the beginning of your program.

2 To move the program counter (PC) to the beginning of main, which you
should do before rerunning your program, enter the following commands at
the prompt:

goto(cc,'main')
run(cc,'main')

2-20

Getting Started with Automation Interface

Moving the PC to main ensures that the program initializes the embedded
C variables.

3 Next, to get information about a variable in your program, use list with
two input options — ’variable’ which defines the type of information to
return, and ’idat’ which identifies the symbol itself. Enter the following
command:

idatlist = list(cc,'variable','idat')

idat is a global variable; the input keyword variable identifies it as one.
Other keywords for list include project, globalvar, function, and type.
Refer to list for more information about these options.

In your MATLAB software workspace and window, you see a new structure
named idatlist. If you use the MATLAB Workspace browser, double-click
idatlist in the browser to see idatlist.

4 Instead of using list to get information about idat, create an object that
represents idat in your MATLAB workspace by entering the following
command:

cvar = createobj(cc,'idat')

createobj returns the numeric object cvar.

cvar=createobj(cc,'idat')

NUMERIC Object stored in memory:
Symbol name : idat
Address : [44316 0]
Data type : short
Word size : 16 bits
Address units per value : 2 au
Representation : signed
Size : [4]
Total address units : 8 au
Array ordering : row-major
Endianness : little

2-21

2 Automation Interface

You use cvar, with the numeric object properties and functions, to access
and manipulate the embedded variable idat, both in your MATLAB
workspace and in CCS if you write your changes back to CCS from your
workspace.

Using read and write

5 Try the following methods to read and write cvar. Notice the way the
return values change as you change the function syntax. Notice also that
write actually changes the data in memory on the processor, as you see
from what comes back to MATLAB after the third read operation.

a Enter read(cvar) at the prompt.

This syntax returns all of the embedded array cvar to your MATLAB
workspace.

ans =

1 508 647 7000

b Next, enter read(cvar,2) at the prompt.

This returns only the second element of cvar— 508.

c Enter write(cvar,4,7001) at the prompt.

This syntax uses write to change the value stored in the fourth element
of cvar to 7001.

d Next, enter write(cvar,1,'FFFF') to write a new value to cvar.

This syntax changes the first element of cvar to -1, which is the decimal
equivalent of 0xFFFF. When you enter FFFF as a string enclosed in single
quotation marks, write converts the string to its decimal equivalent and
stores that value at the processor location in memory.

e Enter read(cvar) at the prompt to see the values in cvar.

f Enter the following command to read the embedded array cvar to verify
your changes to the first and fourth elements:

read(cvar,[1 size(cvar)])

2-22

Getting Started with Automation Interface

Using cast, convert, and size
read took the raw values of idat stored in processor memory and converted
them to equivalent MATLAB software numeric values. How read converts
idat elements to numeric values is controlled by the properties of the object
cvar that resulted from using createobj to create it.

When you created cvar, the object that accesses the embedded variable idat,
createobj assigned appropriate default property values to the properties
of cvar for your processor DSP architecture and for the C representation
of variable idat.

It may help you develop your program if you change the default conversion
properties. Several of the object properties, such as endianness, arrayorder,
and size respond to changes made using function set. To make more complex
changes, use functions like cast and convert that adjust multiple object
property values simultaneously.

In step 6 of this tutorial, you have the opportunity to use cast, convert,
and size to modify cvar by changing property values. Unlike read and
write, cast, convert, and size (and set mentioned earlier) do not affect the
information stored on the processor; they only change the properties of the
object in MATLAB software. Unless you write your changes back to your
processor, the changes you make in MATLAB software stay in MATLAB
software.

6 To demonstrate changing the properties of cvar using cast, convert, and
size, enter the following commands at the prompt. Use read to view the
changes each command makes to cvar.

a set(cvar,'size',[2])

idat gets resized to only the first two elements in the array.

b read(cvar)

ans =

-1 508

Returns only two values, not the full data set you saw in step 5a.

c uintcvar = cast(cvar,'unsigned short')

2-23

2 Automation Interface

uintcvar is a new object, a copy of cvar (and thus idat), but with the
datatype property value of unsigned short instead of double. The
actual values are not different — only the interpretation. Where cvar
interprets the values in idat as doubles, uintcvar interprets the values
in idat as unsigned integers with 16 bits each. When you use the object
to read idat, the returned values from idat are interpreted differently.

d read(uintcvar)

e convert(cvar,'unsigned short')

In contrast to cast, convert does not make a copy of cvar; it changes
the datatype property of cvar to be unsigned short.

NUMERIC Object stored in memory:

Symbol name : idat

Address : [44316 0]

Data type : unsigned short

Word size : 16 bits

Address units per value : 2 au

Representation : unsigned

Size : [2]

Total address units : 4 au

Array ordering : row-major

Endianness : little

f read(cvar)

ans =

65535 508

One of the first things you did in these examples was change the size of
cvar to 2. You should see that reflected in the returned values. The

2-24

Getting Started with Automation Interface

values returned by cvar after you change the datatype property should
match the values returned by uintcvar because the objects have the
same properties.

The first value of idat is no longer -1, although you changed the value in
step 5d. You changed the datatype to unsigned short for cvar, so the
first element of idat that you set to -1 is now shown as the unsigned
equivalent 65535.

Using getmember
You have worked with fairly simple data in memory on your processor.
Functions in Embedded IDE Link CC enable you to manipulate more complex
data like strings, structures, bitfields, enumerated data types, and pointers
in a very similar way.

The next tutorial examples demonstrate common functions for manipulating
structures, strings, and enumerated data types on your processor. Of most
importance is the method getmember which extracts a single specified field
from a structure on your processor as an object in MATLAB software.

To continue the tutorial, enter the commands shown in the following steps.

7 cvar = createobj(cc,'myStruct')

You create a new object cvar, to replace the existing cvar, that represents
an embedded structure named myStruct on your processor. One of the
defined structures in the tutorial program is myStruct.

STRUCTURE Object stored in memory:
Symbol name : myStruct
Address : [44288 0]
Address units per value : 28 au
Size : [1]
Total Address Units : 28 au
Array ordering : row-major
Members : 'iy', 'iz'

8 read(cvar)

ans =

2-25

2 Automation Interface

iy: [2x3 double]
iz: 'MatlabLink'

Here is the definition of myStruct from ccstut.c in CCS.

struct TAG_myStruct {
int iy[2][3];
myEnum iz;

} myStruct = { {{1,2,3},{4,-5,6}}, MatlabLink}

9 write(cvar,'iz','Simulink')

This write syntax updates the field iz in myStruct with the enumerated
name Simulink. If you look into ccstut.c, you see that iz is an
enumerated datatype.

10 cfield = getmember(cvar,'iz')

cfield, the object returned by getmember, represents the embedded
variable iz in the project. Here is what cfield looks like in property form.

ENUM Object stored in memory:

Symbol name : iz

Address : [44312 0]

Word size : 32 bits

Address units per value : 4 au

Representation : signed

Size : [1]

Total address units : 4 au

Array ordering : row-major

Endianness : little

Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedprocessorC6x=4

11 write(cfield,4)

12 read(cvar)

ans =

2-26

Getting Started with Automation Interface

iy: [2x3 double]
iz: 'EmbeddedprocessorC6x'

The command write(cfield,4) replaced the string MatlabLink with the
fourth value EmbeddedprocessorC6x. That is an example of writing to an
embedded variable by value.

13 cstring = createobj(cc,'myString')

createobj returns the object cstring that represents a C structure
embedded in the project. When you omit the closing semicolon on the
command, MATLAB software displays the object properties.

STRING Object stored in memory:
Symbol name : myString
Address : [44360 0]
Word size : 8 bits
Address units per value : 1 au
Representation : signed
Size : [29]
Total address units : 29 au
Array ordering : row-major
Endianness : little
Char conversion type : ASCII

The properties provide details about cstring.

14 read(cstring)

MATLAB software displays the contents of cstring

ans =

Treat me like an ASCII String

15 write(cstring,7,'ME')

This command changes the seventh element of MyString to ME. When you
reread cstring, me should be replaced by ME.

16 read(cstring)

2-27

2 Automation Interface

ans =

Treat ME like an ASCII String

17 write(cstring,1,127)

write changes the contents of the first element of MyString to the ASCII
character 127 — a nonprinting character.

18 readnumeric(cstring)

Using readnumeric with a string object input argument returns the
numeric equivalent of the characters in MyString, as shown in the
following program listing:

ans =

Columns 1 through 12

127 114 101 97 116 32 77 69 32 108 105 107

Columns 13 through 24

101 32 97 110 32 65 78 83 73 32 83 116

Columns 25 through 29

114 105 110 103 0

Closing the Links or Cleaning Up CCS IDE
Objects that you create in Embedded IDE Link CC software have COM
handles to CCS. Until you delete these handles, the CCS process (cc_app.exe
in the Microsoft Windows Task Manager) remains in memory. Closing
MATLAB software removes these COM handles automatically, but there
may be times when it helps to delete the handles manually, without quitting
the application.

Use clear to remove objects from your MATLAB software workspace and to
delete handles they contain. clear all deletes everything in your workspace.
To retain your MATLAB software data while deleting objects and handles,

2-28

Getting Started with Automation Interface

use clear objname. This applies both to ticcs objects your create with ticcs
and other object you create with createobj. To remove the objects created
during the tutorial, the tutorial program executes the following command at
the prompt:

clear cvar cfield uintcvar

This tutorial also closes the project in CCS with the following command:

close(cc,projfile,'project')

To delete your link to CCS, enter clear cc at the prompt.

Your development tutorial using Code Composer Studio IDE is done.

During the tutorial you

1 Selected your processor.

2 Created and queried links to CCS IDE to get information about the link
and the processor.

3 Used MATLAB software to load files into CCS IDE, and used MATLAB
software to run that file.

4 Worked with your CCS IDE project from MATLAB software by reading
and writing data to your processor, and changing the data from MATLAB
software.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

2-29

2 Automation Interface

Getting Started with RTDX

In this section...

“Introducing the Tutorial for Using RTDX” on page 2-31
“Creating the ticcs Objects” on page 2-36
“Configuring Communications Channels” on page 2-39
“Running the Application” on page 2-41
“Closing the Connections and Channels or Cleaning Up” on page 2-48
“Listing the Functions for Embedded IDE Link CC software” on page 2-52

Embedded IDE Link CC and the objects for CCS IDE and RTDX speed and
enhance your ability to develop and deploy digital signal processing systems
on Texas Instruments processors. By using MATLAB software and Embedded
IDE Link CC, your MathWorks™ tools, CCS IDE and RTDX work together
to help you test and analyze your processing algorithms in your MATLAB
software workspace.

In contrast to CCS IDE, using links for RTDX lets you interact with your
process in real time while it’s running on the processor. Across the connection
between MATLAB software and CCS, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as needed without stopping the program or
setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments’ Code Composer Studio™
software and at least one DSP development board. You can use the
hardware simulator in CCS IDE to run this tutorial. The tutorial uses the
TMS320C6711 DSK as the board, with the C6711 DSP as the processor.

2-30

Getting Started with RTDX™

After you complete the tutorial, either in the demonstration form or by
entering the functions along with this text, you are ready to begin using
RTDX with your applications and hardware.

Introducing the Tutorial for Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one
place to another.

Developers create algorithms they need to accomplish the desired result. Once
they have the algorithms, they use models and DSP processor development
tools to test their algorithms, to determine whether the processing achieves
the goal, and whether the processing works on the proposed platform.

Embedded IDE Link CC and the links for RTDX and CCS IDE ease the job
of taking algorithms from the model realm to the real world of the processor
on which the algorithm runs.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your processor. RTDX offers
real-time data exchange in two directions between MATLAB software and
your processor process. Data you send to the processor has little effect on the
running process and plotting the data you retrieve from the processor lets you
see how your algorithms are performing in real time.

To introduce the techniques and tools available in Embedded IDE Link CC for
using RTDX, the following procedures use many of the methods in the link
software to configure the processor, open and enable channels, send data to
the processor, and clean up after you finish your testing. Among the functions
covered are:

2-31

2 Automation Interface

Functions From Objects for CCS IDE

Function Description

ticcs Create connections to CCS IDE and
RTDX.

cd Change your CCS IDE working
directory from MATLAB software.

open Load program files in CCS IDE.
run Run processes on the processor.

Functions From the RTDX Class

Function Description

close Close the RTDX links between
MATLAB software and your
processor.

configure Determine how many channel
buffers to use and set the size of each
buffer.

disable Disable the RTDX links before you
close them.

display Return the properties of an object
in formatted layout. When you omit
the closing semicolon on a function,
disp (a built-in function) provides
the default display for the results of
the operation.

enable Enable open channels so you can use
them to send and retrieve data from
your processor.

isenabled Determine whether channels are
enabled for RTDX communications.

2-32

Getting Started with RTDX™

Function Description

isreadable Determine whether MATLAB
software can read the specified
memory location.

iswritable Determine whether MATLAB
software can write to the processor.

msgcount Determine how many messages are
waiting in a channel queue.

open Open channels in RTDX.
readmat Read data matrices from the

processor into MATLAB software as
an array.

readmsg Read one or more messages from a
channel.

writemsg Write messages to the processor over
a channel.

This tutorial provides the following workflow to show you how to use many
of the functions in the links. By performing the steps provided, you work
through many of the operations yourself. The tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Within this set of tasks, numbers 1, 2, and 4 are fundamental to all
development projects. Whenever you work with MATLAB software and
objects for RTDX, you perform the functions and tasks outlined and presented
in this tutorial. The differences lie in Task 3. Task 3 is the most important for
using Embedded IDE Link CC to develop your processing system.

1 Create an RTDX link to your desired processor and load the program to
the processor.

All projects begin this way. Without the links you cannot load your
executable to the processor.

2 Configure channels to communicate with the processor.

2-33

2 Automation Interface

Creating the links in Task 1 did not open communications to the processor.
With the links in place, you open as many channels as you need to support
the data transfer for your development work. This task includes configuring
channel buffers to hold data when the data rate from the processor exceeds
the rate at which MATLAB software can capture the data.

3 Run your application on the processor. You use MATLAB software to
investigate the results of your running process.

4 Close the links to the processor and clean up the links and associated
debris left over from your work.

Closing channels and cleaning up the memory and links you created
ensures that CCS IDE, RTDX, and Embedded IDE Link CC are ready for
the next time you start development on a project.

This tutorial uses an executable program named rtdxtutorial_6xevm.out
as your application. When you use the RTDX and CCS IDE links to develop
your own applications, replace rtdxtutorial_6xevm.out in Task 3 with the
filename and path to your digital signal processing application.

You can view the tutorial M-file used here by clicking rtdxtutorial. To run
this tutorial in MATLAB software, click run rtdxtutorial.

2-34

Getting Started with RTDX™

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your processor must include functions or code that define
the channels.

Your C source code might look something like this to create two channels,
one to write and one to read.

rtdx_CreateInputChannel(ichan); % processor reads from this.
rtdx_CreateOutputChannel(ochan); % processor writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.

If you are working with a model in Simulink software and using code
generation, use the To Rtdx and From Rtdx blocks in your model to add the
RTDX communications channels to your model and to the executable code
on your processor.

One more note about this tutorial. Throughout the code we use both the dot
notation (direct property referencing) to access functions and link properties
and the function form.

For example, use the following command to open and configure ichan for
write mode.

cc.rtdx.open('ichan','w');

You could use an equivalent syntax, the function form, that does not use
direct property referencing.

open(cc.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of cc, as shown by the following
command:

2-35

2 Automation Interface

rx = cc.rtdx;

Creating the ticcs Objects
With your processing model converted to an executable suitable for your
desired processor, you are ready to use the objects to test and run your model
on your processor. Embedded IDE Link CC and the objects do not distinguish
the source of the executable — whether you used Embedded IDE Link CC and
Real-Time Workshop, CCS IDE, or some other development tool to program
and compile your model to an executable does not affect the object connections.
So long as your ..out file is acceptable to the processor you select, Embedded
IDE Link CC provides the connection to the processor.

Note Program rtdxtutorial_6xevm.out processors the C6711 DSK We
compiled, built, and linked the program as an executable to run on the C6711
processor. To use the tutorial without changes, processor your C6711 DSK
when you define properties boardnum and procnum.

Before continuing with this tutorial, you must load a valid GEL file to
configure the EMIF registers of your processor and perform any required
processor initialization steps. Default GEL files provided by CCS are stored
in ..\cc\gel in the folder where you installed CCS software. Select File
> Load_GEL in CCS IDE to load the default GEL file that matches your
processor family, such as init6x0x.gel for the C6x0x processor family, and
your configuration.

Begin the process of getting your model onto the processor by creating a link
to CCS IDE. Start by clearing all existing handles and setting echo on so you
see functions in the M-file execute as the program runs:

1 clear all; echo on;

clear all has the side effect of removing debugging breakpoints
and resetting persistent variables because function breakpoints and
persistent variables are cleared whenever the M-file changes or is cleared.
Breakpoints within your executable remain after clear. Clearing the
MATLAB software workspace does not affect your executable.

2 Now construct the link to your board and processor by entering

2-36

Getting Started with RTDX™

cc=ticcs('boardnum',0);

boardnum defines which board the new link accesses. In this example,
boardnum is 0. Embedded IDE Link CC connects the link to the first, and in
this case only, processor on the board. To find the boardnum and procnum
values for the boards and simulators on your system, use ccsboardinfo.
When you enter the following command at the prompt

ccsboardinfo

Embedded IDE Link CC returns a list like the following one that identifies
the boards and processors in your computer.

Board Board Proc Processor Processor

Num Name Num Name Type

1 C6xxx Simulator (Texas
Inst...

0 CPU TMS320C6211

0 C6701 EVM (Texas
Instruments)

0 CPU_1 TMS320C6701

3 To open and load the processor file, change the path for MATLAB software
to be able to find the file.

projname =

C:\Temp\LinkForCCSDemos_3.2\rtdxtutorial\c6x\c64xp\rtdxtut_sim.pjt

outFile =

C:\Temp\LinkForCCSDemos_v3.2\rtdxtutorial\c6x\c64xp\rtdxtut_sim.out

processor_dir = demoPjt.DemoDir

processor_dir =

C:\Temp\LinkForCCSDemos_v3.2\rtdxtutorial\c6x\c64xp

2-37

2 Automation Interface

% Go to processor directory

cd(cc,processor_dir);cd(cc,tgt_dir); % Or cc.cd(tgt_dir)

dir(cc); % Or cc.dir

To load the appropriate project file to your processor, enter the following
commands at the MATLAB software prompt. getDemoProject is a
specialized function for loading Embedded IDE Link CC demo files. It is
not supported as a standard Embedded IDE Link CC function.

demoPjt = getDemoProject(cc,'ccstutorial');

demoPjt =

isLibProj: 0

TemplateProject: 'C:\Temp\LinkForCCSDemos_v3.2\template\c6x\c64x.pjt'

DemoDir: 'C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp'

ProjectFile: 'C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp\ccstut.pjt'

ProgramFile: 'C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp\ccstut.out'

SrcFile: {'$matlabroot\toolbox\ccslink\ccsdemos\ccstutorial\ccstut.c'}

LibFile: ''

CmdFile: {'$matlabroot\toolbox\ccslink\ccsdemos\shared\c6x\c64p.cmd'}

HdrFile: ''

BuildOpts: [1x1 struct]

ProjectAction: 'recreateProj-rebuildProg'

RebuildDemo: 1

demoPjt.ProjectFile

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\LinkForCCSDemos_v3.2\ccstutorial\c6x\c64xp

2-38

Getting Started with RTDX™

Notice where the demo files are stored on your machine. In general,
Embedded IDE Link CC software stores the demo project files in

LinkforCCS_vproduct_version

For example, if you are using version 3.2 of Embedded IDE Link CC
software, the project demos are stored in LinkforCCS_v3.2\. Embedded
IDE Link CC software creates this directory in a location on your machine
where you have write permission. Usually, there are two locations where
Embedded IDE Link CC software tries to create the demo directory, in
the order shown.

a In a temporary directory on the C drive, such as C:\temp\.

b If Embedded IDE Link CC software cannot use the temp directory, you
see a dialog box that asks you to select a location to store the demos.

4 You have reset the directory path to find the tutorial file. Now open the .out
file that matches your processor type, such as rtdxtutorial_c67x.out or
rtdxtutorial_c64x.out.

cc.open('rtdxtutorial_67x.out')

Because open is overloaded for the CCS IDE and RTDX links, this may
seem a bit strange. In this syntax, open loads your executable file onto
the processor identified by cc. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB software and your processor.

Configuring Communications Channels
Communications channels to the processor do not exist until you open and
enable them through Embedded IDE Link CC and CCS IDE. Opening
channels consists of opening and configuring each channel for reading or
writing, and enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify

2-39

2 Automation Interface

a string that does not identify an existing channel in the executable, the
open operation fails.

In this tutorial, two channels exist on the processor — ichan and ochan.
Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB software or CCS IDE. You could configure
ichan as the output channel and ochan as the input channel. The links would
work just the same. For simplicity, the tutorial configures ichan for input
and ochan for output. One more note—reading and writing are defined as
seen by the processor. When you write data from MATLAB software, you
write to the channel that the processor reads, ichan in this case. Conversely,
when you read from the processor, you read from ochan, the channel that
the processor writes to:

1 Configure buffers in RTDX to store the data until MATLAB software can
read it into your workspace. Often, MATLAB software cannot read data as
quickly as the processor can write it to the channel.

cc.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your processor to MATLAB software without getting
lost.

2 Define one of the channels as a write channel. Use ’ichan’ for the channel
name and ’w’ for the mode. Either ’w’ or ’r’ fits here, for write or read.

cc.rtdx.open('ichan','w');

3 Now enable the channel you opened.

cc.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by entering

2-40

Getting Started with RTDX™

cc.rtdx.enable;

You could do this step before you configure the channels — the order does
not matter.

6 Reset the global time-out to 20 s to provide a little room for error. ticcs
applies a default timeout value of 10 s. In some cases this may not be
enough.

cc.rtdx.get('timeout')
ans =

10
cc.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

7 Check that the timeout property value is now 20 s and that your link has
the correct configuration for the rest of the tutorial.

cc.rtdx

RTDX Object:
API version: 1.0
Default timeout: 20.00 secs
Open channels: 2

Running the Application
To this point you have been doing housekeeping functions that are common to
any application you run on the processor. You load the processor, configure
the communications, and set up other properties you need.

In this tutorial task, you use a specific application to demonstrate a few of the
functions available in Embedded IDE Link CC that let you experiment with
your application while you develop your prototype. To demonstrate the link
for RTDX readmat, readmsg, and writemsg functions, you write data to your
processor for processing, then read data from the processor after processing:

1 Restart the program you loaded on the processor. restart ensures the
program counter (PC) is at the beginning of the executable code on the
processor.

cc.restart

2-41

2 Automation Interface

Restarting the processor does not start the program executing. You use run
to start program execution.

2 Type cc.run('run');

Using ’run’ for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
control returns to MATLAB software so you can work in MATLAB software
while the program runs. Other options for the mode are

• ’runtohalt’ — start to execute the program and wait to return control to
MATLAB software until the process reaches a breakpoint or execution
terminates.

• ’tohalt’ — change the state of a running processor to ’runtohalt’ and
wait to return until the program halts. Use tohalt mode to stop the
running processor cleanly.

3 Type the following functions to enable the write channel and verify that the
enable takes effect.

cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

If MATLAB software responds ans = 0 your channel is not enabled and
you cannot proceed with the tutorial. Try to enable the channel again and
verify the status.

4 Write some data to the processor. Check that you can write to the
processor, then use writemsg to send the data. You do not need to enter
the if-test code shown.

if cc.rtdx.iswritable('ichan'), % Used in a script application.

disp('writing to processor...') % Optional to display progress.

indata=1:10

cc.rtdx.writemsg('ichan', int16(indata))

end % Used in scripts for channel testing.

The if statement simulates writing the data from within a MATLAB
software script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write

2-42

Getting Started with RTDX™

and exit the program, or respond in some way. When you are writing or
reading data to your processor in a script or M-file, checking the status of
the channels can help you avoid errors during execution.

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB software to print a
message as it reads the data from the processor by adding the function

disp('writing to processor...')

Function cc.rtdx.writemsg('ichan', int16(indata)) results in 20
messages stored on the processor. Here’s how.

When you write indata to the processor, the following code running on the
processor takes your input data from ichan, adds one to the values and
copies the data to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));
puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {

recvd[i] +=1;
}
while (!RTDX_isOutputEnabled(&ochan))

{ /* wait for channel enable from MATLAB */ }
RTDX_write(&ochan, recvd, sizeof(recvd));
while (RTDX_writing != NULL)
{ /* wait for data xfer INTERRUPT DRIVEN for C6000 */ }

}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial directory.

5 Type the following to check the number of available messages to read from
the processor.

num_of_msgs = cc.rtdx.msgcount('ochan');

2-43

2 Automation Interface

num_of_msgs should be zero. Using this process to check the amount of
data can make your reads more reliable by letting you or your program
know how much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.

cc.rtdx.isenabled('ochan')

You should get back ans = 0— you have not enabled the channel yet.

7 Now enable and verify ’ochan’.

cc.rtdx.enable('ochan');
cc.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB software responds ans = 1. If not,
try enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = cc.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB software. In the next few steps of
this tutorial you read data from the ochan queue to different data formats
within MATLAB software.

10 Read one message from the queue into variable outdata.

outdata = cc.rtdx.readmsg('ochan','int16')

outdata =

2-44

Getting Started with RTDX™

2 3 4 5 6 7 8 9 10 11

Notice the ’int16’ represent option. When you read data from your
processor you need to tell MATLAB software the data type you are reading.
You wrote the data in step 4 as 16-bit integers so you use the same data
type here.

While performing reads and writes, your process continues to run. You
did not need to stop the processor to get the data or send the data, unlike
using most debuggers and breakpoints in your code. You placed your data
in memory across an RTDX channel, the processor used the data, and you
read the data from memory across an RTDX channel, without stopping
the processor.

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10
vector stored on the processor.

outdata = cc.rtdx.readmsg('ochan','int16',3)

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message,
or matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =

4 5 6 7 8 9 10 11 12 13

13 Read two messages from the processor into two 2-by-5 matrices in your
MATLAB software workspace.

outdata = cc.rtdx.readmsg('ochan','int16',[2 5],2)

outdata =

[2x5 int16] [2x5 int16]

2-45

2 Automation Interface

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

outdata{1,:}

ans =

6 8 10 12 14

7 9 11 13 15

ans =

7 9 11 13 15

8 10 12 14 16

15 For a change, read a message from the queue into a column vector.

outdata = cc.rtdx.readmsg('ochan','int16',[10 1])

outdata =

8

9

10

11

12

13

14

15

16

17

16 Embedded IDE Link CC provides a function for reading messages into
matrices–readmat. Use readmat to read a message into a 5-by-2 matrix in
MATLAB software.

outdata = readmat(cc.rtdx,'ochan','int16',[5 2])

outdata =

9 14

10 15

11 16

2-46

Getting Started with RTDX™

12 17

13 18

Because a 5-by-2 matrix requires ten elements, MATLAB software reads
one message into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =
12

18 To demonstrate the connection between messages and a matrix in MATLAB
software, read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =

10 14 18 13 17

11 15 19 14 18

12 16 11 15 19

13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = cc.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = cc.rtdx.readmat('ochan','int16',[10 5])

outdata =

12 13 14 15 16

13 14 15 16 17

14 15 16 17 18

2-47

2 Automation Interface

15 16 14 18 19

16 17 18 19 20

17 18 19 20 21

18 19 20 21 22

19 20 21 22 23

20 21 22 23 24

21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them.
Data in the message you remove is lost. Use flush to remove the next
message in the read queue. Then check the waiting message count.

cc.rtdx.flush('ochan',1)
num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =

4

23 Empty the remaining messages from the queue and verify that the queue is
empty.

cc.rtdx.flush('ochan','all')

With the all option, flush discards all messages in the ochan queue.

Closing the Connections and Channels or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping
your processor, disabling the RTDX channels you enabled, disabling RTDX
and closing your open channels. Performing this series of tasks ensures
that future processes avoid trouble caused by unexpected interactions with
remaining handles, channels, and links from earlier development work.

Best practices suggest that you include the following tasks (or an appropriate
subset that meets your development needs) in your development scripts and
programs.

2-48

Getting Started with RTDX™

We use four functions in this section; each has a purpose — the operational
details in the following list explain how and why we use each one. They are

• clear — remove all RTDX objects and handles associated with a CCS
and RTDX link. When you finish a session with RTDX, clear removes all
traces of the specified link, or all links when you use the ’all’ option in the
syntax. When you clear one or more links, they no longer exist and cannot
be reopened or used. If you are ending your programming session and do
not want to retain any of the channels or links you created, use clear to
end the RTDX communications and links and release all channels and
resources associated with existing CCS IDE and RTDX links. You do not
need to use the close or disable functions first.

To load a new program to a processor on which you have a program
running, and to which you have links, you must clear the existing links
before you load the new program to the processor.

• close — close the specified RTDX channel. To use the channel again,
you must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your processor.

• disable— remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful
when you do not want to see the data that is being fed to the channel, but
you may want to read the channel later. By enabling the channel later, you
have access to the data entering the channel buffer. Note that data that
entered the channel while it was disabled is lost.

• halt— stop a running processor. You may still have one or more messages
in the host buffer.

Use the following procedure to shut down communications between MATLAB
software and the processor, and end your session:

1 Begin the process of shutting down the processor and RTDX by stopping
the processor. Type the following functions at the prompt.

if (isrunning(cc)) % Use this test in scripts.
cc.halt; % Halt the processor.

end % Done.

2-49

2 Automation Interface

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. Consider this
test to be a safety check. No harm comes to the processor if it is already
stopped when you tell it to stop. When you direct a stopped processor to
halt, the function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you
opened to communicate with the processor.

cc.rtdx.disable('all');

If necessary, using disable with channel name and processor identifier
input arguments lets you disable only the channel you choose. When you
have more than one board or processor, you may find disabling selected
channels meets your needs.

When you finish your RTDX communications session, disable RTDX to
ensure that Embedded IDE Link CC releases your open channels before
you close them.

cc.rtdx.disable;

3 Use one or all of the following function syntaxes to close your open
channels. Either close selected channels by using the channel name in the
function, or use the all option to close all open channels.

• cc.rtdx.close('ichan') to close your input channel in this tutorial.

• cc.rtdx.close('ochan') to close your output channel in the tutorial.

• cc.rtdx.close('all') to close all of your open RTDX channels,
regardless of whether they are part of this tutorial.

Consider using the all option with the close function when you finish
your RTDX work. Closing channels reduces unforeseen problems caused
by channel objects that may exist but do not get closed correctly when
you end your session.

4 When you created your RTDX object (cc = ticcs('boardnum',1) at the
beginning of this tutorial, the ticcs function opened CCS IDE and set the
visibility to 0. To avoid problems that occur when you close the interface to
RTDX with CCS visibility set to 0, make CCS IDE visible on your desktop.

2-50

Getting Started with RTDX™

The following if statement checks the CCS IDE visibility and changes
it if needed.

if cc.isvisible,

cc.visible(1);

end

Note Visibility can cause problems. When CCS IDE is running invisibly on
your desktop, do not use clear all to get rid of your links for CCS IDE
and RTDX. Without a ticcs object that references the CCS IDE you cannot
access CCS IDE to change the visibility setting, or close the application. To
close CCS IDE when you do not have an existing object, either create a new
object to access the CCS IDE, or use Microsoft Windows Task Manager to
end the process cc_app.exe, or close the MATLAB software.

5 You have finished the work in this tutorial, enter the following to close all
your remaining links to CCS IDE and release all the associated resources.

clear ('all'); % Calls the link destructors to remove all links.

echo off

clear all without the parentheses removes all variables from your
MATLAB software workspace.

You have completed the tutorial using RTDX. During the tutorial you

1 Opened connections to CCS IDE and RTDX and used those connections to
load an executable program to your processor.

2 Configured a pair of channels so you could transfer data to and from your
processor.

3 Ran the executable on the processor, sending data to the processor for
processing and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

This tutorial provides a working process for using Embedded IDE Link CC
and your signal processing programs to develop programs for a range of Texas

2-51

2 Automation Interface

Instruments processors. While the processor may change, the essentials of
the process remain the same.

Listing the Functions for Embedded IDE Link CC
software
To review a complete list of functions and methods that operate with ticcs
objects, either CCS IDE or RTDX, enter either of the following commands at
the prompt.

help ticcs
help rtdx

If you already have a ticcs object cc, you can use dot notation to return the
methods for CCS IDE or RTDX by entering one of the following commands at
the prompt:

• cc.methods

• cc.rtdx.methods

In either instance MATLAB software returns a list of the available functions
for the specified link type, including both public and private functions. For
example, to see the functions (methods) for links to CCS IDE, enter:

help ticcs

TICCS Function that creates handles to Code Composer Studio(tm).

Description of methods available for TICCS

ACTIVATE Set the active project, text file or build configuration

ADD Add source file to a project

ANIMATE Initiate a processor execution with breakpoint animation

ADDRESS Search the processor's symbol table for an address

BUILD Compile/Link to build a program file

TICCS Constructor which establishes the link to CCS

CD Change or query working directory of CCS

CLOSE Close CCS project or text file

CREATEOBJ Create objects for manipulating processor values

DIR List files in CCS working directory

2-52

Getting Started with RTDX™

DISP Display information about the TICCS object

HALT Immediately terminate execution of the processor

INFO Produce a list of information about the processor

INSERT Insert a debug point into processor memory

ISREADABLE Query if a block of processor memory is available for reading

ISRUNNING Query status of processor execution

ISRTDXCAPABLE Query if processor supports RTDX communications

ISVISIBLE Query visibility of CCS application

ISWRITABLE Query if a block of processor memory is available for writing

LIST Produce various lists of information from CCS

LOAD Load a program file into the processor

NEW Create a default project, text file or build configuration

OPEN Load a workspace, project or program file

PROFILE Return measurements from any DSP/BIOS(tm) STS objects

READ Return a block of data from the memory of the processor

REGREAD Return data stored in a processor register

REGWRITE Modify the contents of a processor register

RELOAD Reload most recently loaded program file

REMOVE Remove a file from a project or a debug point from memory

RESET Reset the processor

RESTART Return PC to the beginning of a processor program

RUN Initiate execution of the processor

SAVE Save CCS project or text file

SYMBOL Return the processor's entire symbol table

VISIBLE Hide or reveal CCS application window

WRITE Place a block of MATLAB data into the memory of the processor

For more information on a given method, use the following syntax:

help ccsdebug/(method)

See also get, set, rtdx.

2-53

2 Automation Interface

Constructing ticcs Objects
When you create a link to CCS IDE using the ticcs command, you are
creating a “ticcs object for accessing the CCS IDE and RTDX interface”
(called a ticcs object for brevity from here on). The ticcs object
implementation relies on MATLAB software object-oriented programming
capabilities.

The discussions in this section apply to the ticcs objects in Embedded IDE
Link CC. For a discussion of the embedded objects that are also part of this
product, refer to Introduction to Objects. Because both object types use the
MATLAB software programming techniques, the information about working
with the ticcs objects, such as how you get or set properties, or use methods,
apply equally to all objects. Only their constructors, properties, and methods
are different.

Like other MATLAB software structures, objects in Embedded IDE Link CC
have predefined fields called object properties.

If you are new to objects, you might find the glossary section, “Some
Object-Oriented Programming Terms ” on page C-5, helpful to explain the
terms used in this guide.

You specify object property values by either

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to Setting Property Values
with set.

Example — Constructor for ticcs Objects
The easiest way to create an object is to use the function ticcs to create
an object with the default properties. Create an object named cc to CCS
IDE by entering

cc = ticcs

2-54

Constructing ticcs Objects

MATLAB software responds with a list of the properties of the object cc you
created along with the associated default property values.

ticcs object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Inspecting the output reveals two objects listed — a CCS IDE object and
an RTDX object. CCS IDE and RTDX objects cannot be created separately.
By design they maintain a member class relationship; the RTDX object is a
class, a member of the CCS object class. In this example, cc is an instance of
the class CCS. If you enter

rx = cc.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
cc.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line
now produces

rx

RTDX channels : 0

The object properties are described in Chapter 6, “Function Reference”, and
in more detail in ticcs Object Properties. These properties are set to default
values when you construct objects.

2-55

2 Automation Interface

Properties and Property Values

In this section...

“Setting and Retrieving Property Values” on page 2-56
“Setting Property Values Directly at Construction” on page 2-57
“Setting Property Values with set” on page 2-57
“Retrieving Properties with get” on page 2-58
“Direct Property Referencing to Set and Get Values” on page 2-59

Links (or objects) in this Embedded IDE Link CC have properties associated
with them. Each property is assigned a value. You can set the values of
most properties, either when you create the link or by changing the property
value later. However, some properties have read-only values. And a few
property values, such as the board number and the processor to which the link
attaches, become read-only after you create the object. You cannot change
those after you create your link.

Setting and Retrieving Property Values
You can set Embedded IDE Link CC ticcs object property values in either
of the following ways:

• Directly when you create the link—Setting Property Values Directly at
Construction

• By using the set function with an existing link — Setting Property Values
with set

Retrieve CCS IDE link property values with the get function.

In addition, direct property referencing lets you either set or retrieve property
values for links.

2-56

Properties and Property Values

Setting Property Values Directly at Construction
To set property values directly when you construct a link, include the
following pair of entries in the input argument list for the link construction
function ticcs:

• A string for the property name to set followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB software.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Object Property Values at Construction
Suppose you want to set the following link characteristics when you create
a link to a DSP on a board in your computer:

• Connect to the second DSP board installed on your computer.

• Connect to the first processor on the board.

• Set the global timeout to 5 s. The default is 10 s.

Do this by entering

cc = ticcs('boardname',1,'procnum',0,'timeout',5);

boardname, procnum, and timeout properties are described in ticcs Object
Properties, as are the other properties for objects.

When you set link property values, the strings for property names and their
values are not sensitive to the case of the string. In addition, you only need to
enter the shortest uniquely identifying string in each case. For example, you
could have typed the above code as

cc = ticcs('board',1,'proc',0,'tim',5);

Setting Property Values with set
After you construct a ticcs object, the set function lets you modify its
property values.

2-57

2 Automation Interface

Example — Setting Object Property Values Using set
For example, set the timeout specification for the link cc from the previous
section.

To do this, enter

set(cc,'time',8);

Now use get to check that the desired changes have been made to cc.

get(cc,"time")

ans =

8

Notice that the display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve property values for an object.

Example — Retrieving Object Property Values Using get
For example, to retrieve the value of the apiversion property for cc, and
assign it to a variable, enter

v = get(cc,'apiversion')

ans =

1 0

2-58

Properties and Property Values

Note When you retrieve properties, the strings for property names and their
values are not case-sensitive. In addition, you only need to enter the shortest
uniquely identifying string in each case. For example, you could have typed
the above code as

v = get(cc,'api');

Example — Displaying Object Property Values Using get
To list the property value of a property of object cc, enter the property name
as shown in the following syntax:

get(cc,'boardname')

ans

myboard

Direct Property Referencing to Set and Get Values
You can reference directly into a property for setting or retrieving property
values using MATLAB software structure-like referencing. Do this by using a
period to index into an object property by name.

Example — Direct Property Referencing in Links

1 Create a link with default values.

2 Change its timeout and number of open channels.

cc = ticcs;
cc.time = 6;
cc.rtdx.numchannels = 4;

Notice that you do not have to enter the full name of the timeout property
name, and you can use lower case to refer to the property name.

To retrieve property values, you can use direct property referencing.

2-59

2 Automation Interface

num = cc.rtdx.numchannels

num =
4

2-60

Overloaded Functions for ticcs Objects

Overloaded Functions for ticcs Objects
Several functions in this Embedded IDE Link CC have the same name as
functions in other MathWorks toolboxes or in MATLAB software. These
behave similarly to their original counterparts, but you apply these functions
directly to an object. This concept of having functions with the same name
operate on different types of objects (or on data) is called overloading of
functions.

For example, the set command is overloaded for link objects (links). Once
you specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array of
data from the processor) directly to the variable name you assign to your link,
without having to specify your link parameters again.

For a complete list of the functions that act on links, refer to the tables of
functions in the function reference pages.

2-61

2 Automation Interface

ticcs Object Properties

In this section...

“Quick Reference to ticcs Object Properties” on page 2-62
“Details About ticcs Object Properties” on page 2-64

Embedded IDE Link CC provides links to your processor hardware so you
can communicate with processors for which you are developing systems
and algorithms. Each link comprises two objects — a CCS IDE object and
an RTDX interface object. The link objects are not separable; the RTDX
object is a subclass of the CCS IDE object. Each of the link objects has
multiple properties. To configure the links for CCS IDE and RTDX, you set
parameters that define details such as the desired board, the processor, the
timeout period applied for communications operations, and a number of other
values. Because Embedded IDE Link CC uses objects to create the links, the
parameters you set are called properties and you treat them as properties
when you set them, retrieve them, or modify them.

This section details the properties for the links for CCS IDE and RTDX. First
the section provides tables of the properties, for quick reference. Following
the tables, the section offers in-depth descriptions of each property, its name
and use, and whether you can set and get the property value associated with
the property. Descriptions include a few examples of the property in use.

MATLAB software users may find much of this handling of objects familiar.
Objects in Embedded IDE Link CC, behave like objects in MATLAB software
and the other object-oriented toolboxes. For C++ programmers, this discussion
of object-oriented programming is likely to be a review.

Quick Reference to ticcs Object Properties
The following table lists the properties for the links in Embedded IDE
Link CC. The second column tells you which object the property belongs to.
Knowing which property belongs to each object in a link tells you how to
access the property.

2-62

ticcs Object Properties

Property
Name

Applies
to Which
Connection?

User
Settable? Description

apiversion CCS IDE No Reports the version
number of your CCS
API.

boardnum CCS IDE Yes/initially Specifies the index number
of a board that CCS IDE
recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to the
processor.

rtdx RTDX No Specifies RTDX in a syntax.
rtdxchannel RTDX No A string. Identifies the

RTDX channel for a link.
timeout CCS IDE Yes/default Contains the global

timeout setting for the
link.

version RTDX No Reports the version of your
RTDX software.

Some properties are read only — you cannot set the property value. Other
properties you can change at all times. If the entry in the User Settable
column is “Yes/initially”, you can set the property value only when you create
the link. Thereafter it is read only.

2-63

2 Automation Interface

Details About ticcs Object Properties
To use the links for CCS IDE and RTDX interface you set values for:

• boardnum— specify the board with which the link communicates.

• procnum — specify the processor on the board. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— specify the global timeout value. (Optional. Default is 10 s.)

Details of the properties associated with links to CCS IDE and RTDX interface
appear in the following sections, listed in alphabetical order by property name.

Many of these properties are object linking and embedding (OLE) handles.
The MATLAB software COM server creates the handles when you create
links for CCS IDE and RTDX. You can manipulate the OLE handles using
get, set, and invoke to work directly with the COM interface with which
the handles interact.

apiversion
Property appversion contains a string that reports the version of the
application program interface (API) for CCS IDE that you are using when you
create a link. You cannot change this string. When you upgrade the API, or
CCS IDE, the string changes to match. Use display to see the apiversion
property value for a link. This example shows the appversion value for
link cc.

display(cc)

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

2-64

ticcs Object Properties

Note that the API version is not the same as the CCS IDE version.

boardnum
Property boardnum identifies the board referenced by a link for CCS IDE.
When you create a link, you use boardnum to specify the board you are
processoring. To get the value for boardnum, use ccsboardinfo or the CCS
Setup utility from Texas Instruments software. The CCS Setup utility assigns
the number for each board installed on your system.

ccsappexe
Property ccsappexe contains the path to the CCS IDE executable file
cc_app.exe. When you use ticcs to create a link, MATLAB software
determines the path to the CCS IDE executable and stores the path in this
property. This is a read-only property. You cannot set it.

numchannels
Property numchannels reports the number of open RTDX communications
channels for an RTDX link. Each time you open a channel for a link,
numchannels increments by one. For new links numchannels is zero until you
open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use get or display to see the RTDX link properties.

cc=ticcs

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

rx=cc.rtdx

2-65

2 Automation Interface

RTDX channels : 0

open(rx,'ichan','r','ochan','w');

get(cc.rtdx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {'' '' ''}
procType: 103
timeout: 10

page
Property page contains the default value CCS IDE uses when the user does
not specify the page input argument in the syntax for a function that access
memory.

procnum
Property procnum identifies the processor referenced by a link for CCS IDE.
When you create an object, you use procnum to specify the processor you are
using . The CCS Setup Utility assigns a number to each processor installed
on each board. To determine the value of procnum for a processor, use
ccsboardinfo or the CCS Setup utility from Texas Instruments software.

To identify a processor, you need both the boardnum and procnum values.
For boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors
are numbered 0, 1, 2, and 3.

rtdx
Property rtdx is a subclass of the ticcs link and represents the RTDX portion
of a link for CCS IDE. As shown in the example, rtdx has properties of its own
that you can set, such as timeout, and that report various states of the link.

2-66

ticcs Object Properties

get(cc.rtdx)

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown
in this code example.

rx=cc.rtdx

RTDX channels : 0

Now you can use rx with the functions in Embedded IDE Link CC, such as
get or set. If you have two open channels, the display looks like the following

get(rx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {2x3 cell}
procType: 98
timeout: 10

when the processor is from the C62 family.

rtdxchannel
Property rtdxchannel, along with numchannels and proctype, is a read-only
property for the RTDX portion of a link for CCS IDE. To see the value of
this property, use get with the link. Neither set nor invoke work with
rtdxchannel.

2-67

2 Automation Interface

rtdxchannel is a cell array that contains the channel name, handle, and
mode for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or
'w' for write

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

timeout
Property timeout specifies how long CCS IDE waits for any process to finish.
Two timeout periods can exist — one global, one local. You set the global
timeout when you create a link for CCS IDE. The default global timeout
value 10 s. However, when you use functions to read or write data to CCS
IDE or your processor, you can set a local timeout that overrides the global
value. If you do not set a specific timeout value in a read or write process
syntax, the global timeout value applies to the operation. Refer to the help
for the read and write functions for the syntax to set the local timeout value
for an operation.

version
Property version reports the version number of your RTDX software. When
you create a ticcs object, version contains a string that reports the version
of the RTDX application that you are using. You cannot change this string.
When you upgrade the API, or CCS IDE, the string changes to match. Use
display to see the version property value for a link. This example shows
the apiversion value for object rx.

get(rx) % rx is an alias for cc.rtdx.

ans =

version: 1

2-68

ticcs Object Properties

numChannels: 0
Rtdx: [1x1 COM]

RtdxChannel: {'' [] ''}
procType: 103
timeout: 10

2-69

2 Automation Interface

2-70

3

Project Generator

• “Introducing Project Generator” on page 3-2

• “Project Generation and Board Selection” on page 3-3

• “About the CCSLinkLib Blockset” on page 3-5

• “Schedulers and Timing” on page 3-10

• “Project Generator Tutorial” on page 3-37

• “Setting Real-Time Workshop Software Parameters for TI Processors” on
page 3-45

• “Setting Model Configuration Parameters” on page 3-48

• “processor Function Library and Embedded IDE Link CC” on page 3-61

• “Model Reference and Embedded IDE Link CC” on page 3-63

3 Project Generator

Introducing Project Generator
Project generator provides the following features for developing project and
generating code:

• Support automated project building for Texas Instruments’ Code Composer
Studio software that lets you create projects from code generated by
Real-Time Workshop and Real-Time Workshop Embedded Coder products.
The project automatically populates CCS projects in the CCS development
environment.

• Configure code generation using model configuration parameters and
processor preferences block options

• Select from two system target files to generate code specific to your
processor

• Configure project build process

• Automatically download and run your generated projects on your processor

3-2

Project Generation and Board Selection

Project Generation and Board Selection
Project Generator uses ticcs objects to connect to the IDE. Each time you
build a model to generate a project, the build process starts by issuing the
ticcs method, as shown here:

cc=ticcs('boardname','name','processornumber',procnum)

The software attempts to connect to the board and processor specified in the
Board name (name) and Processor number (procnum) parameters in the
Target Preferences block in the model.

The result of the ticcs method changes, depending on the boards you
configured in CCS. The following table describes how the software selects the
board to connect to in your board configuration.

CCS Board Configuration State Response by Software

Code Composer Studio or Embedded
IDE Link CC software not installed.

Returns an error message asking you
to verify that you installed both Code
Composer Studio and Embedded
IDE Link CC properly.

Code Composer Studio software does
not have any configured boards.

Returns an error message that the
software could not find any boards in
your configuration. Use Setup Code
Composer Studio™ to configure at
least one board.

Code Composer Studio software has
one configured board.

Attaches to the board regardless of
the name of the board supplied in
the Target Preferences block. You
see a warning message telling you
which board the software selected.

Code Composer Studio software has
one board configured that does not
match the board name in the Target
Preferences block.(*)

Returns a warning message that the
software could not find the board
specified in the block and connected
to the board listed in the warning
message. The software connects
to the first board in your CCS
configuration.

3-3

3 Project Generator

CCS Board Configuration State Response by Software

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is one of the
configured boards.

Connects to the specified board.

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is not one of the
configured boards.(*)

Returns a message asking you
to select a board from the list of
configured boards. You have two
choices:
• Select a board to use for project
generation, and click OK. Your
selection does not change the
board specified in the Target
Preferences block. The software
connects to the selected board.

• Click Abort to stop the project
build and code generation process.
The software does not connect to
the IDE or board.

(*)You may encounter the situation where you do not have the correct board
configured in CCS because of one of the following conditions:

• You changed your board configuration after you added the Target
Preferences block to a model and saved the model. When you reopen the
model, the board specified in Board name in the block is no longer in
your configuration.

• You are working with a model from a source whose board configuration is
not the same as yours. The model includes a Target Preferences block.

Use ccsboardinfo at the MATLAB prompt to verify or review your configured
boards.

3-4

About the CCSLinkLib Blockset

About the CCSLinkLib Blockset
Embedded IDE Link CC block library ccslinklib comprises block libraries
that contain blocks designed for generating projects for specific processors.
The libraries are

Library Description

C280x DSP Chip Support
(ccslinklib_c280x)

Blocks for managing memory and
task scheduling on C280x-based
hardware or simulators.

C281x DSP Chip Support
(ccslinklib_c281x)

Blocks for managing memory and
task scheduling on C281x-based
hardware or simulators.

C5000 DSP Chip Support
(ccslinklib_c5xxx)

Blocks for managing memory and
task scheduling on C5000-based
hardware or simulators.

C6000 DSP Chip Support
(ccslinklib_c6xxx)

Blocks for managing memory and
task scheduling on C6000-based
hardware or simulators.

Target Preferences
(ccslinklib_tgtprefs)

Block that configures Simulink
models for specific processors.

Each block library appears in one of the next sections. The sections review the
configuration options for blocks. For more information about RTDX, refer to
Getting Started with RTDX in your Embedded IDE Link CC documentation.

Each processor-specific block library contains each of these blocks:

• Hardware Interrupt block

• Idle Task block

• Memory Allocate block

• Memory Copy block

Blocks for the processor families are almost identical. The following
descriptions about each block, such as the Hardware Interrupt block, present

3-5

3 Project Generator

all options for the block. Notes indicate when an option applies only to a
processor-specific version of the block.

Here is the main library of blocks for Embedded IDE Link CC.

3-6

About the CCSLinkLib Blockset

The following figure shows the C280x DSP Chip Support library.

The C281x DSP Chip Support library contains the blocks in the following
figure.

3-7

3 Project Generator

For the C5000 processor family, the C5000 DSP Chip Support library appears
in the following figure.

3-8

About the CCSLinkLib Blockset

The C6000 DSP Chip Support library appear in the next figure.

The Target Preferences library appears in the next figure.

3-9

3 Project Generator

Schedulers and Timing
The next sections describe how Embedded IDE Link CC provides timing and
scheduling for generated code running on your processor.

In this section...

“Timer-Based Versus Asynchronous Interrupt Processing” on page 3-10
“Synchronous Scheduling” on page 3-12
“Asynchronous Scheduling” on page 3-13
“Asynchronous Scheduler Examples” on page 3-20
“Uses for Asynchronous Scheduling” on page 3-21
“Multitasking Scheduler Examples” on page 3-23

Timer-Based Versus Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single- and multitasking, runs out of
the context of a timer interrupt. The generated code that represents model
blocks for periodic tasks runs periodically, clocked by the periodic interrupt
whose period is equal to the base sample time of the model. This description
of scheduling and timing applies both to generated code operation that
incorporates DSP/BIOS real-time operating system (RTOS) and basic code
generation mode where DSP/BIOS RTOS is not included.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0 in Simulink.

In the following figure, the relationship between starting the model and when
model your model ex ecutes the first interrupt shows by the offset to the
right of t=0.0 from the start of the time line. Before the first interrupt, the
simulation goes through the timer set up period and one base rate period.

3-10

Schedulers and Timing

����

����� 	
���
����
��
��������������

����������
�����

	
���
��
�����

	
���
��
�����

	
���
��
�����

This execution scheduling scheme is not flexible enough for some systems,
such as control and communication systems that must respond to
asynchronous events in real time. Such systems may need to handle a variety
of hardware interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the Embedded IDE Link
CC library to your model, listed here.

Scheduling blocks in the C280x/C28x3x DSP Chip Support Library

- C280x/C28x3x Hardware Interrupt — Create interrupt service routine
to handle hardware interrupt on C280x/C28x3x processor.

- Idle Task — Create task that runs as separate thread.

Scheduling blocks in the C281x DSP Chip Support Library

- C281x Hardware Interrupt — Create interrupt service routine to handle
hardware interrupt on C281x processor.

- Idle Task — Create task that runs as separate thread.

3-11

3 Project Generator

Scheduling blocks in the C5000 DSP Chip Support Library

- Hardware Interrupt — Create interrupt service routine to handle
hardware interrupt on C5000 processors.

- Idle Task — Create task that runs as separate thread.

Scheduling blocks in the C6000 DSP Chip Support Library

- Hardware Interrupt — Create interrupt service routine to handle
hardware interrupt on C6000 processors.

- Idle Task — Create task that runs as separate thread.

• Simulink sets the base rate priority to 40. the lowest priority.

• If your application does not service asynchronous interrupts, include only
the algorithm and device driver blocks that specify the periodic sample
times in the model. Generating code from a model like this automatically
enables and manages a timer interrupt. The periodic timer interrupt clocks
the entire model.

Synchronous Scheduling
For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced
by an interrupt service routine (ISR). The code generated for Embedded IDE
Link CC uses a timer. To calculate the timer period, the software uses the
following equation.

Timer Period
CPU Clock Rate Base Sample Time

Low Resolu
_

(_ _) * (_ _)
_

=
ttion Clock Divider

Prescaler
_ _

*

The software configures the timer so the base rate sample time for the coded
process corresponds to the interrupt rate. Embedded IDE Link CC calculates
and configures the timer period to ensure the desired sample rate.

Different processor families use the timer resource and interrupt number
differently. Entries in the following table show the resources each family uses.

3-12

Schedulers and Timing

Processor
Family

Timer Resource Interrupt
Number

Simulink
Priority

C2000 Timer 1
C55x™ Timer 1 22

C6000 Timer 1

40 for all
processors

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and no sample
time is defined explicitly, Simulink assigns a default sample time of 0.2
second.

Asynchronous Scheduling
Embedded IDE Link CC facilitates modeling and automatically generating
code for asynchronous systems by providing the following scheduling blocks:

• Hardware Interrupt blocks for bare-board code generation mode

• Idle Task

The Hardware Interrupt block generates selected hardware interrupts for TI’s
TMS320™ processors, generate corresponding ISRs, and connect the ISRs to
the corresponding interrupt service vector table entries.

Note You are responsible for mapping and enabling the interrupts you
specify in the block dialog box.

When you connect the output of the Hardware Interrupt block to the control
input of a function-call subsystem, the generated subsystem code is called
from the ISRs each time the interrupt is raised.

3-13

3 Project Generator

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Mapping and Enabling Interrupts in Generated Code
Although the scheduling blocks generate ISRs to respond to interrupts, they
do not enable the interrupts in your code. The blocks also do not map the
interrupts to the specific ISRs you specify in the block dialog boxes.

To enable and map the interrupt routines, you provide code that performs the
mapping and enabling functions. ISR mapping and enabling code might look
like following samples which enable and map interrupts 5 and 7:

IRQ_map(IRQ_EVT_EXTINT5,5); % Map interrupt 5 in the block to ext. int.5
IRQ_set(IRQ_EVT_EXTINT5); % Enable interrupt 5.
IRQ_map(IRQ_EVT_EXTINT7,7); % Map interrupt 7 in the block to ext. int.7
IRQ_set(IRQ_EVT_EXTINT7); % Enable interrupt 7.

The following figure shows the block dialog box that specifies the interrupts

3-14

Schedulers and Timing

One way to add the custom code to your generated code is to add a System
Outputs block to your model. In the System Outputs block, you add the code
to enable and map the interrupts.

Real-Time Workshop includes the System Outputs block in the Custom Code
library.

When you add the System Outputs block to your model and open the block
dialog box, you see the following dialog box.

3-15

3 Project Generator

To enable and map the interrupts, add the code to the dialog box as shown in
the following figure.

3-16

Schedulers and Timing

Generating code from your model that includes the System Outputs block
adds the enabling and mapping code to your project so the interrupts work.

3-17

3 Project Generator

The following figure shows a top-level model c6000_hwi_interrupts that
includes the System Outputs block in the Function-Call Subsystem2
submodel.

3-18

Schedulers and Timing

3-19

3 Project Generator

Asynchronous Scheduler Examples
Using the scheduling blocks, you can use an asynchronous (real-time)
scheduler for your processor application. The asynchronous scheduler enables
you to define interrupts and tasks to occur when you want by using blocks in
the following libraries:

• C280x/C28x3x DSP Chip Support

• C281x DSP Chip Support

• C5000 DSP Chip Support

• C6000 DSP Chip Support

Note Models in this section are for example purposes only. You cannot build
and run them without additional blocks.

Also, you can schedule multiple tasks for asynchronous execution using the
blocks.

The following figures show a model updated to use the asynchronous
scheduler by adding a scheduling block and converting the model to a function
subsystem.

Before

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

3-20

Schedulers and Timing

After

Hardware Interrupt

IRQNN

C6000

Hardware Interrupt

Denoising
Algorithm

function ()

In 1 Out 1

Algorithm Inside the Function Call Subsystem Block

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4

function

f()

In1

1
Output

Uses for Asynchronous Scheduling
The following sections present common cases for using the scheduling blocks
described in the previous sections.

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

3-21

3 Project Generator

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. Subsystem execution of the reverberation
function is the same as the subsystem described for the Free-Running
DSP/BIOS Task. It is data driven via a background DMA interrupt-controlled
ISR, shown in the following figure.

Out1
1

Integer Delay

z
−2400

Feedback Gain

0.8

Delay Mix

.9

function

f()

In1
1

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

In this model, the Hardware Interrupt block installs a task that runs when it
detects an external interrupt. This task performs the specified function with
the LED (using TI’s C6416 DSK board as an example).

3-22

Schedulers and Timing

Multitasking Scheduler Examples
Embedded IDE Link CC provides a scheduler that supports multiple
tasks running concurrently and preemption between tasks running at the
same time. The ability to preempt running tasks enables a wide range of
scheduling configurations. Examples in this section demonstrate a variety of
multitasking configurations:

• “Three Odd-Rate Tasks Without Preemption and Overruns” on page 3-25

• “Two Tasks with the Base-Rate Task Overrunning, No Preemption” on
page 3-26

• “Two Tasks with Sub-Rate 1 Overrunning Without Preemption” on page
3-28

• “Three Odd-Rate Tasks with Preemption and No Overruns” on page 3-29

• “Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rate1
Tasks Overrun” on page 3-31

• “Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overruns”
on page 3-33

• “Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-Rate
1 Tasks Overrun” on page 3-35

Each example presents either two or three tasks:

• Base rate task. Base rate is the highest rate in the model or application.
The examples use a base rate of 1ms—the task should execute every one
millisecond.

• Sub-Rate 1. The first subrate task. Sub-Rate 1 task runs more slowly than
the Base-Rate task. Sub-Rate 1 task rate is 2ms in the examples—the task
should execute every 2ms.

3-23

3 Project Generator

• Sub-Rate 2. In examples with three tasks, the second subrate task is
called Sub-Rate 2. Sub-Rate 2 tasks run more slowly than Sub-Rate 1. In
the examples, Sub-Rate 2 runs at either 4ms or 3ms. When Sub-Rate 2 is
4ms, the example is called even. The example is called odd when Sub-Rate
2 is 3ms. The odd or even naming only identifies Sub-Rate 2 as being 3 or
4ms. It does not affect or predict the performance of the tasks.

Preemption is the ability of one task to pause the processing of a running task
to run instead. With the multitasking scheduler, you can define a task as
preemptible—thus, another task can pause (preempt) the task that allows
preemption. In the scheduler examples that demonstrate preemption, one or
more of the tasks allow preemption.

Overrunning occurs when a task does not reach completion before it is
scheduled to run again. For example, overrunning can occur when a
Base-Rate task does not finish in 1 ms. Overrunning delays the next execution
of the overrunning task and may delay execution of other tasks.

The following legend applies to the plots in the next sections.

• Blue triangles indicate when the task started.

• Dark red areas indicate the period during which a task is running

• Light red areas within dark red areas indicate a period during which a
running task is suspended, preempted by a task with higher priority

3-24

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and Overruns
In this three task scenario, all of the tasks run as scheduled. No overruns
occur and preemption is not present.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms
Sub-Rate 1 2ms 2ms

Sub-Rate 2 4ms 4ms

3-25

3 Project Generator

Two Tasks with the Base-Rate Task Overrunning, No
Preemption
In this two rate scenario, the Base-Rate overruns the 1ms time intended and
prevents the subrate task from completing successfully or running every 2ms.
Sub-Rate 1 does not allow preemption and fails to run when scheduled, but is
never interrupted. The Base-Rate runs every 2ms and Sub-Rate 1 runs every
4ms instead of 2ms.

3-26

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)

3-27

3 Project Generator

Two Tasks with Sub-Rate 1 Overrunning Without Preemption
Two rates running simultaneously—the Base-Rate task and one subrate task.
Both the Base-Rate task and the Sub-Rate 1 task overrun. Base-Rate runs
every 2ms instead of 1ms. The Sub-Rate 1 task both overruns and is affected
by the Base-Rate task overrunning. Thus, Sub-Rate 1 task execution is
delayed by a factor of 4. Sub-Rate 1 runs every 8ms rather than every 2ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 8ms (overrunning)

3-28

Schedulers and Timing

The Base-Rate runs at 1ms. The Base-Rate task preempts Sub-Rate 1 when it
tries to execute. The Sub-Rate 1 tasks overrun, taking up to 5ms to complete
rather than 2ms.

Three Odd-Rate Tasks with Preemption and No Overruns
In the following three task scenario, the Base-Rate runs as scheduled and
preempts Sub-Rate 1. Both the Base-Rate and Sub-Rate 1 tasks preempt
Sub-Rate 2 task execution. Preemption of the subrate tasks does not prevent
the subrate tasks from running on schedule.

3-29

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 3ms 6ms

3-30

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and the Base and
Sub-Rate1 Tasks Overrun
Three taks running simultaneously—the Base-Rate task and two subrate
tasks. Both the Base-Rate task and the Sub-Rate 1 task overrun. As a result,
the Base-Rate task runs every 2ms instead of 1ms. The Sub-Rate 1 task both
overruns and is affected by the Base-Rate task overrunning. Thus, Sub-Rate
1 and Sub-Rate 2 task execution is delayed by a factor of 2—Sub-Rate 1 runs
every 4ms rather than every 2ms and Sub-Rate 2 runs every 6ms instead
of 3ms.

3-31

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)
Sub-Rate 2 3ms 6ms (overrunning)

3-32

Schedulers and Timing

Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task
Overruns
In this three task scenario, the Base-Rate preempts Sub-Rate 1 which is
overrunning. The overrunning subrate causes Sub-Rate 1 to execute every
4ms instead of 2ms. Also, every other fourth execution of Sub-Rate 2 does
not occur. Thus, instead of executing at t=0, 3, 6, 9, 12, 15, 18,…, Sub-Rate
2 executes at t=0, 3, 9, 12, 15, 21 and so on. The t=6 and t=18 instances do
not occur.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

3-33

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Sub-Rate 1 2ms 4ms (overrunning)
Sub-Rate 2 3ms 6ms (overrunning and

skipping every other
fourth execution)

3-34

Schedulers and Timing

Three Even-Rate Tasks with Preemption and the Base-Rate
and Sub-Rate 1 Tasks Overrun
In this three task scenario, two of the tasks overrun—the Base-Rate and
Sub-Rate 1. The overrunning Base-Rate executes every 2ms. Sub-Rate 1 also
overruns due to the Base-Rate overrun, doubling the execution rate. Also,
Sub-Rate 1 is overrunning as well, doubling the execution rate again, from
the intended 2ms to 8ms. Sub-Rate 2 responds to the Base-Rate and Sub-Rate
1 overruns by running every 16ms instead of every 4ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

3-35

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Sub-Rate 1 2ms 8ms (overrunning)
Sub-Rate 2 3ms 16ms (overrunning)

3-36

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Creating the Model” on page 3-38
“Adding the Target Preferences Block to Your Model” on page 3-38
“Specifying Simulink Software Configuration Parameters for Your Model”
on page 3-41

In this tutorial you build a model and generate a project from the model using
Embedded IDE Link CC software.

Note The model demonstrates project generation. You cannot not build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, Signal Processing Blockset™ blocks, and blocks from
other blocksets to create the model application.

2 Add the Target Preferences block from the Embedded IDE Link CC Target
Preferences library to your model. Verify and set the block parameters for
your hardware. In most cases, the default settings work fine.

If you are using a simulator processor, select Simulator on the Board
info pane of the Target Preferences block.

3 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Real-Time Workshop software options such as processor configuration
and processor compiler selection

4 Generate your project.

5 Review your project in CCS.

3-37

3 Project Generator

Creating the Model
To create the model for audio reverberation, follow these steps:

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Look for the Integer Delay block in the Discrete library of Simulink blocks
and the Gain block in the Commonly Used Blocks library. Do not add the
Custom Board block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
So that you can configure your model to work with TI’s processors, Embedded
IDE Link CC includes a block library containing a Target Preferences block
for Texas Instruments processors:

• Target Preferences

Entering ccslinklib_tgtpref at the MATLAB software prompt opens this
window showing the library blocks. This block library is included in Embedded
IDE Link CC ccslinklib blockset in the Simulink Library browser.

3-38

Project Generator Tutorial

Adding a Target Preferences block to a model triggers a dialog box that asks
about your model configuration settings. The message tells you that the model
configuration parameters will be set to default values based on the processor
specified in the block parameters. To set the parameters automatically, click
Yes. Clicking No dismisses the dialog box and does not set the parameters.

When you click Yes, the software sets the system target file to
ccslink_ert.stf and sets the hardware options and product-specific
parameters in the model to default values. If you open the model
Configuration Parameters, you see the Embedded IDE Link CC pane option
on the select tree.

Clicking No prevents the software from setting the system target file and the
product specific options. When you open the model Configuration Parameters
for your model, you do not see the Embedded IDE Link CC pane option
on the select tree. To enable the options, select the ccslink_ert.stf or

3-39

3 Project Generator

ccslink_grt.stf system target file from the System Target File list in the
Real-Time Workshop pane options.

To add the Target Preferences block to your model, follow these steps:

1 Double-click Embedded IDE Link CC in the Simulink Library browser
to open the ccslinklib blockset.

2 Double-click the library Target Preferences to see the blocks available for
your processor.

3 Drag and drop the Custom Board block to your model as shown in the
following model window figure.

4 Double-click the Custom Board block in the model to open the block dialog
box.

5 In the Block dialog box, select your processor from the Processor list.

6 Verify the CPU clock value and, if you are using a simulator, select
Simulator.

7 Verify the settings on theMemory and Sections tabs to be sure they are
correct for the processor you selected.

3-40

Project Generator Tutorial

8 Click OK to close the Target Preferences dialog box.

You have completed the model. Now configure the model configuration
parameters to generate a project in CCS IDE from your model.

Specifying Simulink Software Configuration
Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Parameters
After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link
CC.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

Note Generated code does not honor Simulink software stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in generated
code, add a Stop Simulation block in your model.

3-41

3 Project Generator

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Code Generation Parameters
To configure Real-Time Workshop software to use the correct processor
files and to compile and run your model executable file, set the options in
the Real-Time Workshop category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your DSP:

1 Select Real-Time Workshop on the Select tree.

2 In processor selection, click Browse to select the system target file
for Embedded IDE Link CCcode generation —ccslink_grt.tlc. It may
already be the selected processor.

Clicking Browse opens the System Target File Browser to allow you
to changes the system target file.

3 On the System Target File Browser, select the system target file
ccslink_grt.tlc and click OK to close the browser.

Setting Embedded IDE Link CC Parameters
To configure Real-Time Workshop software to use the correct code generation
options and to compile and run your model executable file, set the options in
the IDE Link CC category of the Select tree in the Configuration Parameters
dialog box. Follow these steps to set the code generation options for your
processor:

1 From the Select tree, choose Embedded IDE Link CC to specify code
generation options that apply to the C6711 DSK processor.

2 Set the following options in the pane under Project options:

• Project options should be Custom.

• Set Compiler options string and Linker options string should be
blank.

3-42

Project Generator Tutorial

3 Under Code Generation, select the Inline run-time library functions
option. Clear the other options.

4 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in IDE handle
name (optional).

5 Change the category on the Select tree to Hardware Implementation.

6 Set Byte ordering to Little endian.

7 Change the category back to IDE Link CC.

8 Set the following Runtime options:

• Build action: Create_project.

• Interrupt overrun notification method: None.

Simulink

You have configured the Real-Time Workshop software options that let you
generate a project for you processor. You may have noticed that you did not
configure a few categories on the Select tree, such as Comments, Symbols,
and Optimization.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Real-Time
Workshop documentation for more information about setting the configuration
parameters.

Building Your Project
After you set the configuration parameters and configure Real-Time Workshop
software to create the files you need, you direct the build process to create
your project:

1 Press OK to close the Configuration Parameters dialog box.

2 Click Ctrl+B to generate your project into CCS IDE.

3-43

3 Project Generator

When you click Build with Create_project selected for Build action, the
automatic build process starts CCS IDE and populates an new project
in the development environment.

3 To stop model execution, use the Halt option in CCS. You could enter halt
at the MATLAB command prompt as well.

3-44

Setting Real-Time Workshop® Software Parameters for TI Processors

Setting Real-Time Workshop Software Parameters for TI
Processors

Before you generate code with Real-Time Workshop software, set the
fixed-step solver step size and specify an appropriate fixed-step solver if the
model contains any continuous-time states. At this time, you should also
select an appropriate sample rate for your system. Refer to your Real-Time
Workshop User’s Guide documentation for additional information.

Note Embedded IDE Link CC does not support continuous states in
Simulink software models for code generation. In the Solver options in
the Configuration Parameters dialog box, you must select Discrete (no
continuous states) as the Type, along with Fixed step.

The Real-Time Workshop pane of the Configuration Parameters dialog
box lets you set numerous options for the real-time model. To open the
Configuration Parameters dialog box, select Simulation > Configuration
Parameters from the menu bar in your model.

The following figure shows the configuration parameters categories when you
are using Embedded IDE Link CC.

3-45

3 Project Generator

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop software processors. They always appear on the list.

The last category under Real-Time Workshop is specific to the Embedded
IDE Link CC system target filesccslink_grt.tlc and ccslink_ert.tlc and
appear when you select either file.

When you select your processor file in Target Selection on the Real-Time
Workshop pane, the options change in the tree.

For Embedded IDE Link CC, the processor to select is ccslink_grt.tlc.
Selecting either the ccslink_grt.tlc or ccslink_ert.tlc adds the
Embedded IDE Link CC-specific options to the Select tree. The
ccslink_grt.tlc file is appropriate for all projects. Select ccslink_ert.tlc
when you are developing projects or code for embedded processors (requires
Real-Time Workshop Embedded Coder software) or you plan to use
Processor-in-the-Loop features.

3-46

Setting Real-Time Workshop® Software Parameters for TI Processors

The following sections present each configuration parameters Select tree
category and the relevant options available in each.

3-47

3 Project Generator

Setting Model Configuration Parameters

In this section...

“Target File Selection” on page 3-49
“Build Process” on page 3-49
“Custom Storage Class” on page 3-50
“Report Options” on page 3-50
“Debug Pane Parameters” on page 3-51
“Optimization Pane Parameters” on page 3-52
“Embedded IDE Link CC Pane Parameters” on page 3-54
“Embedded IDE Link CC Default Project Configuration — custom” on page
3-59

Use the options in the Select tree under Real-Time Workshop to perform
the following configuration tasks.

• Select your processor file.

• Configure your build process.

• Specify whether to use custom storage classes.

Selecting the system target (ccslink_grt.tlc or ccslink_ert.tlc) in
System target file enables Embedded IDE Link CC configuration options in
the Embedded IDE Link CC pane.

3-48

Setting Model Configuration Parameters

Target File Selection

System target file
Clicking Browse opens the processor File Browser where you select
ccslink_grt.tlc as your Real-Time Workshop System target file for
Embedded IDE Link CC.

If you are using Real-Time Workshop Embedded Coder software or plan to
use PIL, select the ccslink_ert.tlc processor in System target file.

Build Process
Embedded IDE Link CC software does not use makefiles or the build process
to generate code. Code generation is project based so the options in this group
do not apply.

3-49

3 Project Generator

Custom Storage Class
When you generate code from a model employing custom storage classes
(CSC), make sure to clear Ignore custom storage classes. This setting is
the default value for Embedded IDE Link CC and for Real-Time Workshop
Embedded Coder.

When you select Ignore custom storage classes,

• Objects with CSCs are treated as if you set their storage class attribute
to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a processor that does not
support CSCs, such as the generic real-time processor (GRT), without having
to reconfigure your parameter and signal objects.

Generate code only
The Generate code only option does not apply to processoring with
Embedded IDE Link CC. To generate source code without building and
executing the code on your processor, select TI C6000 runtime from the
Category list in the Select tree. Then, under Runtime, select Generate
code only for Build action. You cannot use DSP/BIOS features when you
use the Generate code only option for the Build action.

Report Options
Two options control HTML report generation during code generation.

• “Create Code Generation report” on page 3-50

• “Launch report automatically” on page 3-51

Create Code Generation report
After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop writes the code

3-50

Setting Model Configuration Parameters

generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use the
following command at the MATLAB prompt to get more information.

docsearch 'Create code generation report'

In the Navigation options, when you select Model-to-code and
Code-to-model, your HTML report includes hyperlinks to various features
in your Simulink model.

Launch report automatically
This option directs Real-Time Workshop to open a MATLAB Web browser
window and display the code generation report. If you clear this option,
you can open the code generation report (modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser.

Debug Pane Parameters
Real-Time Workshop uses the processor Language Compiler (TLC) to
generate C code from the model.rtw file. The TLC debugger helps you identify
programming errors in your TLC code. Using the debugger, you can

• View the TLC call stack.

• Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this dialog box, you set options that are specific to
Real-Time Workshop process and TLC debugging.

3-51

3 Project Generator

For details about using the options in Debug, refer to “About the TLC
Debugger” in your Real-Time Workshop processor Language Compiler
documentation.

Optimization Pane Parameters
On the Optimization pane in the Configuration Parameters dialog box, you
set options for the code that Real-Time Workshop generates during the build
process. You use these options to tailor the generated code to your needs.
Select Optimization from the Select tree on the Configuration Parameters
dialog box. The figure shows the Optimization pane when you select the
system target file ccslink_grt.tlc under Real-Time Workshop system
target file.

3-52

Setting Model Configuration Parameters

These are the options typically selected for Real-Time Workshop:

• Conditional input branch execution

• Signal storage reuse

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous local variables (Expression folding)

• Loop unrolling threshold

• Optimize initialization code for model reference

For more information about using these and the other Optimization options,
refer to your Real-Time Workshop documentation.

3-53

3 Project Generator

Embedded IDE Link CC Pane Parameters
On the select tree, the Embedded IDE Link CC entry provides options in
these areas:

• Runtime— Set options for run-time operations, like the build action

• Project Options— Set build options for your project code generation

• Code Generation— Configure your code generation requirements

• Link Automation— Export a ticcs object to your MATLAB workspace

Runtime Options
Before you are able to an executable to run on any Texas Instruments
processor, you must configure the run-time options for the source model.

By selecting values for the options available, you configure the operation
of your processor.

Build action
To specify to Real-Time Workshop software what to do when you click Build,
select one of the following options. The actions are cumulative—each listed
action adds features to the previous action on the list and includes all the
previous features:

• Generate_code_only— Directs Real-Time Workshop software to generate
ANSI C code only from the model. It does not use the Texas Instruments
software tools, such as the compiler and linker, and you do not need to have
CCS installed. Also, MATLAB software does not create the connection to
CCS that results from the other options. This option does not build code for
TI processors. You cannot use this option when you set the system target
file to either ccslink_grt.tlc or ccslink_ert.tlc.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_linkforccs_rtw in your MATLAB
working directory. This file set contains many of the same files that
Real-Time Workshop software generates to populate a CCS project when
you choose Create_Project for the build action.

3-54

Setting Model Configuration Parameters

• Create_Project— Directs Real-Time Workshop software to start CCS and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in CCS.

• Archive_library— Directs Real-Time Workshop software to archive the
project for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your CCS projects for models that you use in model referencing.

• Build— Builds the executable COFF file, but does not download the file
to the processor.

• Build_and_execute — Directs Real-Time Workshop software to build,
download, and run your generated code as an executable on your processor.

• Create_processor_in_the_loop_project — Directs the Real-Time
Workshop code generation process to create PIL algorithm object code as
part of the project build.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop software
when to stop the code generation and build process.

To run your model on the processor, select Build_and_execute. This selection
is the default build action; Real-Time Workshop software automatically
downloads and runs the model on your board.

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically. You do
not need to reset the board before building models.

Interrupt overrun notification method
To enable the overrun indicator, choose one of three ways for the processor
to respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message — When the DSP encounters an overrun condition, it
prints a message to the standard output device, stdout.

3-55

3 Project Generator

• Call_custom_function — Respond to overrun conditions by calling
the custom function you identify in Interrupt overrun notification
function.

Interrupt overrun notification function
When you select Call_custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the
function the processor should use to notify you that an overrun condition
occurred. The function must exist in your code on the processor.

Overrun Indicator and Software-Based Timer
Embedded IDE Link CC includes software that generates interrupts in
models that do not have ADC or DAC blocks, or that use multiple clock rates.
In the following cases, the overrun indicator does not work:

• In multirate systems where the rate in the model is not the same as the
base clock rate for your model. In these cases, the timer in Embedded IDE
Link CC provides the interrupts for setting the model rate.

• In models that do not include ADC or DAC blocks, the timer in Embedded
IDE Link CC provides the software interrupts that drive model processing.

Project Options
Before you run your model as an executable on any processor, you must
configure the Project options for the model.

Compiler options string
To let you determine the degree of optimization provided by the TI optimizing
compiler, you enter the optimization level to apply to files in your project. For
details about the compiler options, refer to your CCS documentation. When
you create new projects, Embedded IDE Link CC sets the optimization to
Function(-o2).

Click Get From IDE to import the compiler option setting from the current
project in the IDE. To reset the compiler option to the default value, click
Reset.

3-56

Setting Model Configuration Parameters

Linker options string
To let you specify the options provided by the TI linker during link time, you
enter the linker options as a string. For details about the linker options,
refer to your CCS documentation. When you create new projects, Embedded
IDE Link CC sets no linker options.

Click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

System stack size (MAUs)
Enter the amount of memory to use for the stack. For more information,
refer to Enable local block outputs on the Optimization pane of the
Configuration Parameters dialog box. Block output buffers are placed on
the stack until the stack memory is fully allocated. After that, the output
buffers go in global memory. Also refer to the online Help system for more
information about Real-Time Workshop options for configuring and building
models and generating code.

Code Generation
From this category, you select options that define the way your code is
generated:

• Profile real-time task execution

• Inline run-time library functions

To enable the real-time execution profile capability, select Profile real-time
task execution. With this selected, the build process instruments your code
to provide performance profiling at the task level. When you run your code,
the executed code reports the profiling information in

To allow you to specify whether the functions generated from blocks in your
model are used inline or by pointers, Inline run-time library functions
tells the compiler to inline each Signal Processing blockset and Video and
Imaging blockset function. Inlining functions can make your code run more
efficiently (better optimized) at the expense of using more memory.

3-57

3 Project Generator

As shown in the following figure, the default setting uses inlining to optimize
your generated code.

When you inline a block function, the compiler replaces each call to a block
function with the equivalent function code from the static run-time library.
If your model use the same block four times, your generated code contains
four copies of the function.

While this redundancy uses more memory, inline functions run more quickly
than calls to the functions outside the generated code.

3-58

Setting Model Configuration Parameters

Link Automation
When you use Real-Time Workshop to build a model to a C6000 processor,
Embedded IDE Link CC makes a connection between MATLAB and CCS. If
you have used Embedded IDE Link CC, you are familiar with function ticcs,
which creates objects the reference between the IDE and MATLAB. This
option refers to the same object, called cc in the function reference pages.
Although MATLAB to CCS is a bridge to a specific instance of the CCS IDE,
what it really is an object that contains information about the IDE instance
it refers to, such as the board and processor it accesses. In this pane, the
Export handle to MATLAB base workspace option lets you instruct
Embedded IDE Link CC to export the object to your MATLAB workspace,
giving it the name you assign in IDE link handle name.

Embedded IDE Link CC Default Project Configuration
— custom
Although CCS offers two standard project configurations, Release and Debug,
models you build with Embedded IDE Link CC use a custom configuration
that provides a third combination of build and optimization settings—custom.

Project configurations define sets of project build options. When you specify
the build options at the project level, the options apply to all files in your
project. For more information about the build options, refer to your TI CCS
documentation.

The default settings for custom are the same as the Release project
configuration in CCS, except for the compiler options discussed in the next
section. custom uses different compiler optimization levels to preserve
important features of the generated code.

Default Compiler Build Options in custom
When you create a new project or build a model to your TI C6000 hardware,
your project and model inherit the build configuration settings from the
configuration custom. The settings in custom differ from the settings in the
default Release configuration in CCS in the compiler settings.

For the compiler options, custom uses the Function(-o2) compiler setting.
The CCS default Release configuration uses File(-o3), a slightly more
aggressive optimization model.

3-59

3 Project Generator

For memory configuration, where Release uses the default memory model
that specifies near functions and data, custom specifies near functions and
data—the -ml1 memory model—because some custom hardware might not
support far data or aggregate data. Your CCS documentation provides
complete details on the compiler build options.

You can change the individual settings or the build configuration within CCS.
Build configuration options that do not appear on these panes default to
match the settings for the Release build configuration in CCS.

3-60

processor Function Library and Embedded IDE Link™ CC

processor Function Library and Embedded IDE Link CC
Embedded IDE Link CC supports processor function library (TFL)
replacement during code generation. Real-Time Workshop introduced
processor Function Libraries (TFL) in TLC code generation to provide blocks
the ability to request type-specific math expressions from a central database
without knowledge of how to emit code for a specific math symbol.

TFL replacement requires Real-Time Workshop Embedded Coder.

Some code generation stages launch TFL queries. Based on the processor
you select, TFL replaces the default Real-Time Workshop sum and multiply
functions with processor-specific compiler intrinsics and assembly code
functions. For more general information about TFL, look for TFL in the
Interface options in “Configuring Real-Time Workshop Code Generation
Parameters”.

TFL Replacement Functions
When you enable TFL replacement, Real-Time Workshop software uses
compiler intrinsics and assembly code functions provided by Embedded
IDE Link CC to replace the sums and multiplies in your generated code.
The replacement functions provide optimized operations that enable your
generated code to run more efficiently and quickly.

Enabling TFL for Code Generation
You use an option in the Configuration Parameters for your model to enable
TFL replacement during code generation. Perform the following steps to
enable the TFL replacement process when you generate code from a model

To use the TFL replacement capability when you generate code, you must
install Real-Time Workshop Embedded Coder software and select the system
target file ccslink_ert.tlc.

1 Open the Configuration Parameters for your model by selecting
Simulation > Configuration Parameters from the model menu bar.

2 On the Select tree in the Configuration Parameters dialog box, choose
Real-Time Workshop.

3-61

3 Project Generator

3 Set the System target file to ccslink_ert.tlc. Use Browse to select
the file.

4 On the Select tree, choose Interface.

5 From the Target function library list, select the TI processor family
that matches your processor.

6 Click OK to save your changes and close the dialog box.

With TFL enabled, your generated code uses the TFL replacement libraries
provided for your processor.

3-62

Model Reference and Embedded IDE Link™ CC

Model Reference and Embedded IDE Link CC
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop software detects
that your model contains referenced models. Simulink software generates
code for the referenced models and uses the generated code to build shared
library files for updating the model diagram and simulation. It also creates

3-63

3 Project Generator

an executable (a MEX file, .mex) for each reference model that is used to
simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from
models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop software calls
make_rtw on the top model, linking to all the library files it created for the
associated referenced models.

Using Model Reference with Embedded IDE Link CC
With few limitations or restrictions, Embedded IDE Link CC provides full
support for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the TI’s
processors is that you must set the Build action (go to Configuration
Parameters > Embedded IDE Link CC) for all models referred to in the
simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

3-64

Model Reference and Embedded IDE Link™ CC

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link CC.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

• Interrupt overrun notification method, Export IDE link handle
to the base workspace, and System stack size are disabled for the
referenced models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link CC does not allow you to use
certain blocks or S-functions in reference models:

3-65

3 Project Generator

• No blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Target Support
Package™ TC2 or Target Support Package TC6 block library

Configuring processors to Use Model Reference
processors that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible processor must be derived from the ERT or
GRT processors.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation processor.

• The External mode option is not supported in model reference Real-Time
Workshop software processor builds. Embedded IDE Link CC does not
support External mode. If you select this option, it is ignored during code
generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in Supporting Shared Utility
Directories in the Build Process.

To use an existing processor, or a new processor, with Model Reference, you
set the ModelReferenceCompliant flag for the processor. For information
on how to set this option, refer to ModelReferenceCompliant in the online
Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference processor, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

3-66

Model Reference and Embedded IDE Link™ CC

Models that you develop with versions 2.4 and later of Embedded IDE Link
CC automatically include the model reference capability. You do not need to
set the flag.

3-67

3 Project Generator

3-68

4

Verification

• “What Is Verification?” on page 4-2

• “Using Processor in the Loop” on page 4-3

• “Real-Time Execution Profiling” on page 4-11

• “System Stack Profiling” on page 4-19

4 Verification

What Is Verification?
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The components of Embedded
IDE Link CC combine to provide tools that help you verify your code during
development by letting you run portions of simulations on your hardware and
profiling the executing code.

Using the Automation Interface and Project Generator components,
Embedded IDE Link CC offers the following verification functions:

• Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor

• Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your processor hardware

4-2

Using Processor in the Loop

Using Processor in the Loop
Processor in the loop provides one powerful verification capability in your
development process. This section discusses the following PIL topics:

In this section...

“Processor-in-the-Loop Overview” on page 4-3
“PIL Block” on page 4-6
“PIL Issues” on page 4-6
“Creating and Using PIL Blocks” on page 4-9

Processor-in-the-Loop Overview
Processor-in-the-loop (PIL) cosimulation is a technique designed to help you
evaluate how well a candidate algorithm, such as a control system, operates
on the actual processor selected for the application.

The term cosimulation reflects a division of labor in which Simulink software
models the plant, while code generated from the controller subsystem runs on
the actual processor hardware.

During the Real-Time Workshop Embedded Coder software code generation
process, you can create a PIL block from one of several Simulink software
components including a model, a subsystem in a model, or subsystem
in a library. You then place the generated PIL block inside a Simulink
software model that serves as the test harness and run tests to evaluate the
processor-specific code execution behavior.

Why Use Cosimulation?

PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In a
classic closed-loop simulation, Simulink software and Stateflow® model such
a system as two subsystems with the signals transmitted between them, as
shown in the following block diagram.

4-3

4 Verification

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design
progresses, you can use Simulink software external mode with standard
Real-Time Workshop software processors (such as GRT or ERT) to help you
model the control system separately from the plant.

However, these simulation techniques do not help you account for restrictions
and requirements imposed by the hardware, such as limited memory
resources, or behavior of processor-specific optimized code. When you finally
reach the stage of deploying controller code on the processor hardware, you
may need to make extensive adjustments to the controller system. After you
make these adjustments, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate
stage between simulation and deployment. In a PIL cosimulation, the
processor participates fully in the simulation loop — hence the term
processor-in-the-loop.

Definitions

4-4

Using Processor in the Loop

PIL Algorithm

The algorithmic code, such as the control algorithm, to be tested during the
PIL cosimulation. The PIL algorithm resides in compiled object form to allow
verification at the object level.

PIL Application

The executable application to run on the processor platform. The PIL
application is created by linking the PIL algorithm object code with some
wrapper code (or test harness) that provides an execution framework that
interfaces to the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function is available to the PIL application. The PIL application uses memcpy
to facilitate data exchange between Simulink software and the cosimulation
processor.

Note Whether the PIL algorithm code under test uses string.h is
independent of the use of string.h by the wrapper code. It depends entirely
on the implementation of the algorithm in the generated code.

How Cosimulation Works

In a PIL cosimulation, Real-Time Workshop software generates an executable
application for the PIL algorithm. This code runs (in simulated time) on a
processor platform. The plant model remains in Simulink software without
the use of code generation.

During PIL cosimulation, Simulink software simulates the plant model for
one sample interval and exports the output signals (ontn of the plant) to the
processor platform via Code Composer Studio software. When the processor
platform receives signals from the plant model, it executes the PIL algorithm
for one sample step. The PIL algorithm returns its output signals (ontn of
the algorithm) computed during this step to Simulink software in inn, via the
CCS interface. At this point, one sample cycle of the simulation is complete
and the plant model proceeds to the next sample interval. The process repeats
and the simulation progresses.

4-5

4 Verification

PIL tests do not run in real time. After each sample period, the simulation
halts to ensure that all data has been exchanged between the Simulink
software test harness and object code. You can then check functional
differences between the model and generated code.

PIL Block
The PIL cosimulation block is the Simulink software block interface to
PIL and the interface between the Simulink software plant model and the
executable application running on the processor. The Simulink software
inputs and outputs of the PIL cosimulation block are configured to match the
input and output specification of the PIL algorithm.

The block is a basic building block that enables you to perform these
operations:

• Select a PIL algorithm

• Build and download a PIL application

• Run a PIL cosimulation

The PIL block inherits the shape and signal names from the parent
subsystem, like those in the following example. This inheritance feature is
convenient for copying the PIL block into the model to replace the original
subsystem for cosimulation.

PIL Issues

• “Data Types Must Be The Same Size on the Host and Processor” on page 4-7

4-6

Using Processor in the Loop

• “Buses and MUX Signals Not Supported at PIL Component Boundary”
on page 4-8

• “Signals with Custom Storage Classes Not Supported at PIL Component
Boundary” on page 4-8

• “Continuous Sample Times Not Supported” on page 4-8

• “PIL with DSP/BIOS Enabled Does Not Support System Stack Profiling”
on page 4-8

• “Real-Time Workshop grt.tlc-Based Targets Not Supported” on page 4-8

Consider the following issues when you work with PIL blocks.

Data Types Must Be The Same Size on the Host and Processor
Only data types with the same size on the host and processor are supported at
the PIL I/O boundary.

The data types used at the PIL I/O boundary are restricted based on the
following rule: PIL supports the data type only if the data type size in
MATLAB software is the same as the data type size on the processor.

• For Boolean, uint8, and int8, the size is 8 bits on the processor and in
MATLAB software.

• For uint16 and int16, the size is 16 bits on processor and in MATLAB
software.

• For uint32 and int32, the size is 32 bits on the processor and in MATLAB
software.

• For single, the size is 32 bits on the processor and in MATLAB software.

• For double, the size is 64 bits on the processor and in MATLAB software.

For example, on C2000 processors, the boolean, uint8, and int8 MATLAB
data types are not supported because the microcontroller uses 16–bit
addressable words. No 8–bit data types.

To avoid data type problems, do not use the example data types in your model
because the data type on the processor does not match the built-in MATLAB
software data type.

4-7

4 Verification

Buses and MUX Signals Not Supported at PIL Component
Boundary
Buses and MUX Signals are not supported at the PIL component boundary.

There is no resolution for this issue.

Signals with Custom Storage Classes Not Supported at PIL
Component Boundary
Signals with Custom Storage Classes are not supported at the PIL component
boundary.

There is no resolution for this issue.

PIL does support the standard storage classes, such as ExportedGlobal.

Continuous Sample Times Not Supported
Continuous sample times are not supported by PIL. If you encounter this
you see the following error:

??? Processor-in-the-Loop (PIL) does not support continuous
time. Please uncheck "continuous time" in the RTW Interface
configuration set options or disable PIL.

You must use discrete sample times in your model configuration parameters
when you use PIL.

PIL with DSP/BIOS Enabled Does Not Support System Stack
Profiling
With DSP/BIOS enabled, the stack profiling option is disabled. To use stack
profiling with PIL, disable DSP/BIOS™ in the model Target Preferences block
and rebuild your project.

Real-Time Workshop grt.tlc-Based Targets Not Supported
Real-Time Workshop grt.tlc-based targets are not supported for PIL.

To use PIL, select the ccslink_ert.tlc target file provided by Real-Time
Workshop Embedded Coder software.

4-8

Using Processor in the Loop

Creating and Using PIL Blocks
Using PIL and PIL blocks to verify your processes begins with a Simulink
model of your process. To see an example of one such model used to implement
PIL, refer to the demo Comparing Simulation and processor Implementation
with Processor-in-the Loop (PIL) (pilsumdiffdemo.mdl) in the demos for
Embedded IDE Link CC.

To create and use a PIL block, perform the following tasks:

1 Develop the model of the process to simulate.

Use Simulink software to build a model of the process to simulate. The
blocks in the library ccslinklib can help you set up the timing and
scheduling for your model.

For information about building Simulink software models, refer to Getting
Started with Simulink in the online Help system.

2 Convert your process to a masked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the new masked subsystem and add a Target Preferences block to
the subsystem.

The block library ccslinklib contains the Target Preferences block to add
to your system. Configure the Target Preferences block for your processor.
For details about the options on the Target Preferences block, refer to the
Target Preferences block reference in the online Help system.

4 Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem.

a From the model menu bar, go to Simulation > Configuration
Parameters in your model to open the Configuration Parameters dialog
box.

b Choose Real-Time Workshop from the Select tree. Set the
configuration parameters for your model as required by Embedded IDE
Link CC software. Get more information about setting the Real-Time
Workshop software parameters in “Setting Real-Time Workshop

4-9

4 Verification

Software Parameters for TI Processors” on page 3-45 in the online Help
system.

c Under Target selection, set the System target file to
ccslink_ert.tlc (PIL requires Real-Time Workshop Embedded Coder
software).

5 Configure the model to perform PIL building and PIL block creation.

a Select Embedded IDE Link CC on the Select tree.

b On the Build actionlist, select
Create_processor_in_the_loop_project to enable PIL.

c From PIL block action

, select Create_PIL_block_build_and_download from the list.

d Click OK to close the Configuration Parameters dialog box.

6 To create the PIL block, right-click the masked subsystem in your model
and select Real-Time Workshop > Build Subsystem from the context
menu.

A new model window opens and the new PIL block appears in it.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

7 Copy the new PIL block from the new model to your model, either in
parallel to your masked subsystem to cosimulate the processes, or replace
your subsystem with the PIL block.

To see the PIL block used in parallel to a masked subsystem, refer
to the demo Comparing Simulation and Target Implementation with
Processor-in-the Loop (PIL) (pilsumdiffdemo.mdl) in the demos for
Embedded IDE Link CC software.

8 Click Simulation > Start to run the PIL simulation and view the results.

4-10

Real-Time Execution Profiling

Real-Time Execution Profiling

In this section...

“Overview” on page 4-11
“Profiling Execution by Tasks” on page 4-12
“Profiling Execution By Subsystems” on page 4-14

Overview
Real-time execution profiling in Embedded IDE Link CC software uses a set
of utilities to support profiling for synchronous and asynchronous tasks, or
atomic subsystems, in your generated code. These utilities record, upload, and
analyze the execution profile data.

Execution profiler supports profiling your code two ways:

• Tasks—Profile your project according to the tasks in the code.

• Atomic subsystems—Profile your project according to the atomic
subsystems in your model.

Note To perform execution profiling, you must generate your project from a
model in Simulink modeling environment.

When you enable profiling, you select whether to profile by task or subsystem.

To profile by subsystems, you must configure your model with at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
“Creating Subsystems” in the online help for Simulink software.

The profiler generates output in the following formats:

• Graphical display that shows task or subsystem activation, preemption,
resumption, and completion. All data appears in a MATLAB graphic with
the data notated by model rates or subsystems and execution time.

4-11

4 Verification

• An HTML report that provides statistical data about the execution of each
task or atomic subsystem in the running process.

These reports are identical to the reports you see if you use
profile(ticcs_obj,'execution','report) to view the execution results.
For more information about report formats, refer to profile. In combination,
the reports provide a detailed analysis of how your code runs on the processor.

Use this general process for profiling your project:

1 Create your model in Simulink modeling environment.

2 Enable execution profiling in the configuration parameters for your model.

3 Run your application.

4 Stop your application.

5 Get the profiling results with the profile function.

The following sections describe profiling your projects in more detail.

Profiling Execution by Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link CC from the Select tree. The pane appears as
shown in the following figure.

4-12

Real-Time Execution Profiling

3 Select Enable real-time profiling.

4 On the Profile by list, select Task to enable real-time task profiling.

5 Select Export IDE link handle to base workspace, and assign a name
for the handle in IDE link handle name.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in CCS or use
halt(objectname) from the MATLAB command prompt. Gathering
profiling data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

4-13

4 Verification

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for information about other reporting options.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

Refer to .

Profiling Execution By Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems along with the tasks.

To configure a model to use subsystem execution profiling, perform the
following steps:

1 Open the Configuration Parameters dialog box for your model.

4-14

Real-Time Execution Profiling

2 Select Embedded IDE Link CC from the Select tree. The pane appears as
shown in the following figure.

3 Select Enable real-time profiling.

4 On the Profile by list, select Atomic subsystem to enable real-time
subsystem execution profiling.

5 Select Export IDE link handle to base workspace and assign a name
for the handle in IDE link handle name.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

4-15

4 Verification

2 To stop the running program, select Debug > Halt in CCS, or use
halt(objectname) from the MATLAB command prompt. Gathering profile
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for more information.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

4-16

Real-Time Execution Profiling

The following figure presents the model that contains the subsystems reported
in the profiling plot.

4-17

4 Verification

Atomic Subsystem Profiling

To Workspace

simout

Rate Transition 3

Rate Transition 2

Rate Transition 1

Rate Transition

IdleTask
Subsystem

function ()Idle Task1
Idle Task

f()

Gain

.9

For Iterator
Subsystem1

for { ... } In 1Out 1

For Iterator
Subsystem

for { ... }In 1 Out 1

Feedback Gain

0.8

Constant

1

Atomic Subsystem Profiling Report.

4-18

file://file://T:/Adoc/matlab/doc/src/toolbox/ccslink/ug/sample_subsystem_profiling_report.html

System Stack Profiling

System Stack Profiling

In this section...

“Overview” on page 4-19
“Profiling System Stack Use” on page 4-21

Overview
Embedded IDE Link CC software enables you to determine how your
application uses the processor system stack. Using the profile method, you
can initialize and test the size and usage of the stack. This information can
help you optimize both the size of the stack and how your code uses the stack.

To provide stack profiling, profile writes a known pattern to the addresses
in the stack. After you run your application for a while, and then stop your
application, profile examines the contents of the stack addresses. profile
counts each address that no longer contains the known pattern as used. The
total number of address that have been used, compared to the total number of
addresses you allocated, becomes the stack usage profile. This profile process
does not tell you how often any address was changed by your application.

You can profile the stack with both the hand written code in a project and
the code you generate from a model.

Note Stack profiling always reports 100% stack usage when your project
uses DSP/BIOS.

When you use profile to initialize and test the stack operation, the software
returns a report that contains information about stack size, usage, addresses,
and direction. With this information, you can modify your code to use the
stack efficiently. The following program listing shows the stack usage results
from running an application on a simulator.

profile(cc,'stack','report')

Maximum stack usage:

4-19

4 Verification

System Stack: 532/1024 (51.95%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report:

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name assigned
to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and the
memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for the
stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

4-20

System Stack Profiling

Profiling System Stack Use
To profile the system stack operation, perform these tasks in order:

1 Load an application.

2 Set up the stack to enable profiling.

3 Run your application.

4 Request the stack profile information.

Note If your application initializes the stack with known values when you
run it, stack usage is reported as 100%. The value does not correctly reflect
the stack usage. For example, DSP/BIOS writes a fixed pattern to the stack
(0x00C0FFEE) when you run your project. This pattern prevents the stack
profiler from reporting the stack usage correctly. Disable DSP/BIOS to use
stack profiling in your project development.

Follow these steps to profile the stack as your application interacts with it. In
this example, cc is an existing ticcs object.

1 Load the application to profile.

2 Use the profile method with the setup input keyword to initialize the
stack to a known state.

profile(cc,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack. For C6000 processors, the pattern is A5.
For C2000 and C5000 processors, the pattern is A5A5 to account for the
address size. As long as your application does not write the same pattern to
the system stack, profile can report the stack usage correctly.

3 Run your application.

4 Stop your running application. Stack use results gathered from an
application that is running may be incorrect.

4-21

4 Verification

5 Use the profile method to capture and view the results of profiling the
stack.

profile(cc,'stack','report')

The following example demonstrates setting up and profiling the stack. The
ticcs object cc must exist in your MATLAB workspace and your application
must be loaded on your processor. This example comes from a C6713
simulator.

profile(cc,'stack','setup') % Set up processor stack--write A5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

run(cc)

halt(cc)

profile(cc,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

4-22

5

Exporting Digital Filters
From FDATool to CCS IDE

• “Introducing FDATool” on page 5-2

• “Guidelines on Exporting Filters from FDATool to Code Composer Studio
IDE” on page 5-3

• “Tutorial — Exporting Filters from FDATool to CCS IDE” on page 5-10

5 Exporting Digital Filters From FDATool to CCS IDE

Introducing FDATool
Filter Design and Analysis Tool (“FDATool: A Filter Design and Analysis
GUI”) in the Signal Processing Toolbox™ product is a powerful user interface
for designing and analyzing filters. FDATool enables you to design digital FIR
or IIR filters by setting filter performance specifications, by importing filters
from your MATLAB workspace, or by directly specifying filter coefficients.
FDATool also provides tools for analyzing filters, such as magnitude and
phase response plots and pole-zero plots.

After you design a filter in FDATool, you can export it to Code Composer
Studio Integrated Development Environment (CCS IDE) to test the filter on a
digital signal processor. Using FDATool with CCS IDE enables you to test
your filter on a selected DSP, tune and optimize the filter in FDATool, and
test your redesigned filter on the processor.

5-2

Guidelines on Exporting Filters from FDATool to Code Composer Studio™ IDE

Guidelines on Exporting Filters from FDATool to Code
Composer Studio IDE

In this section...

“Selecting the Export Mode” on page 5-4
“Cautions Regarding Writing Directly to Memory” on page 5-5
“Variables and Memory Necessary for Filter Export” on page 5-6
“Selecting the Export Data Type” on page 5-8

You can export filters from FDATool to CCS IDE by generating an ANSI® C
header file, or by writing the filter coefficients directly to processor memory.
To export a filter from FDATool to CCS IDE, use the Export to Code Composer
Studio(tm) IDE dialog box (shortened to Export to CCS IDE dialog box in this
section). Open the dialog box from the FDATool processors menu.

5-3

5 Exporting Digital Filters From FDATool to CCS IDE

For instructions on using the Export to CCS IDE dialog box, refer to“Tutorial
— Exporting Filters from FDATool to CCS IDE” on page 5-10.

Selecting the Export Mode
You can export a filter by generating an ANSI C header file, or by writing
the filter coefficients directly to processor memory. The following table
summarizes when and how to use the two export modes.

Export Mode When to Use Suggested Use

Generate ANSI C header file You have not yet allocated
memory in your DSP for the
filter coefficients to export.

(For a sample generated
header file, see “Contents
of the ANSI Header File
Generated in Task 1” on page
5-17.)

Create a program file from
the generated ANSI C header
file. Loading this program file
into your processor allocates
static memory locations in
the processor, and exports
your filter coefficients to these
memory locations. You may
want to edit the header file so
that the program file allocates
extra processor memory,
providing you more freedom
to change your filter. See
“Allocating Sufficient or Extra
Memory for Filter Coefficients”
on page 5-5 in the next section.

Write directly to memory You have already allocated
memory in your DSP for the
filter coefficients to export.

Tune your filter coefficients
in FDATool, and write the
updated filter coefficients
directly to the allocated
processor memory. Refer to
the next section“Cautions
Regarding Writing Directly to
Memory” on page 5-5.

5-4

Guidelines on Exporting Filters from FDATool to Code Composer Studio™ IDE

Cautions Regarding Writing Directly to Memory
When you write filter coefficients directly to processor memory, you need to
allocate sufficient memory for the coefficients, and proceed with caution when
you update your filter coefficients in processor memory.

Allocating Sufficient or Extra Memory for Filter Coefficients
When you export filter coefficients directly to processor memory, the filter
coefficients overwrite as many memory locations as they need. The export
process does not check whether you allocated sufficient memory for your filter
coefficients. You must allocate enough memory for your filter coefficients or
you may get unexpected results. To ensure you allocate enough processor
memory for your filter, export the filter by generating a ANSI C header file,
as described in “Tutorial — Exporting Filters from FDATool to CCS IDE”
on page 5-10.

You can allocate extra memory by editing the generated ANSI C header file,
and then loading the associated program file into your processor as described
in the tutorial in “Step 8 — Export the Filter by Generating a Program File”
on page 5-16. Allocating extra memory provides more freedom for changing a
filter and overwriting its previous version stored in processor memory. Even
after you allocate extra memory, you should still proceed with caution when
overwriting old filter coefficients with updated coefficients as discussed in
the next section.

Overwriting Old Filter Coefficients with Updated Coefficients
When you tune a filter to overwrite its previous version in processor memory,
carefully consider changes that increase the memory required to store the
filter coefficients, or that alter the export data type.

Do Not Tune Filter Export Data Type. Never tune a filter by changing its
data type, because the allocated memory expects the data type of the first
version of the filter that you exported. Overwriting a filter with a filter that
has a different data type usually yields unexpected results.

5-5

5 Exporting Digital Filters From FDATool to CCS IDE

Be Wary of Filter Changes that Increase Memory Required to Store
Filter Coefficients. If you do not allocate extra memory when exporting
the first version of your filter, do not tune the filter in ways that increase
the memory required to store its coefficients. For instance, you should not
increase the order of the filter. When you overwrite your original filter with
one of a higher order, the updated filter may overwrite data in memory
locations that you did not intend for storing filter coefficients. Even if you do
allocate extra memory for your filter coefficients, be cautious about making
changes that increase the memory required to store the coefficients. Examples
of such changes include

• Changing an FIR filter to an IIR filter

• Increasing the filter order

• Increasing the number of filter sections

Variables and Memory Necessary for Filter Export
When you export a filter by generating an ANSI C header file, the header file
stores the filter coefficients in filter coefficient variables. You must name
these variables in the Export to CCS IDE dialog box. Variable names cannot
be reserved words of the ANSI C programming language, such as if. By
generating a program file from the ANSI C header file and loading the
program file into your processor, the filter coefficient variables in the header
file appear in the processor application symbol table.

When you export a filter by writing directly to processor memory, the
processor stores the filter coefficients in memory locations. These memory
locations correspond to filter coefficient variables in the processor application
symbol table. To export directly to processor memory, you specify these
variables in the Export to CCS IDE dialog box.

The necessary filter coefficient variables depend on the structure of your
filter. The Export to CCS IDE dialog box provides you with the following
parameters to specify or name the necessary filter coefficient variables. The
dialog box activates only the parameters you need to set; the others become
invisible or inactive.

5-6

Guidelines on Exporting Filters from FDATool to Code Composer Studio™ IDE

Parameters for
Specifying Filter
Coefficient Variables Description

Numerator Numerator filter coefficients
Numerator length Number of numerator filter coefficients
Denominator Denominator filter coefficients
Denominator length Number of denominator filter coefficients
Lattice coeffs Lattice coefficients
Lattice coeffs length Number of lattice coefficients
Ladder coeffs Ladder coefficients
Ladder coeffs length Number of ladder coefficients
Number of sections Number of filter sections (parameter is inactive

if your filter has only one section)

5-7

5 Exporting Digital Filters From FDATool to CCS IDE

In the following table, x marks indicate the parameters to set for each filter
structure.

Selecting the Export Data Type
When you export a filter, the export process suggests the export data type that
best preserves the performance of your filter. Use the suggested export data
type by selecting Export suggested in the Export to CCS IDE dialog box.
The data types that you can export are

• Signed integer (8-, 16-, or 32-bit)

• Unsigned integer (8-, 16-, or 32-bit)

• Double-precision floating point

5-8

Guidelines on Exporting Filters from FDATool to Code Composer Studio™ IDE

• Single-precision floating point

Recommended Procedure for Selecting Export Data Type
By adhering to the following procedure when you set the export data type of
your filter, the exported filter coefficients closely match the coefficients of
the filter you designed in FDATool.

Step 1 — Set the Numerical Precision of Your Filter in FDATool. Set the
numerical precision of your filter in FDATool by using the Filter Quantization
pane, available when you install Filter Design Toolbox. If you do not have
Filter Design Toolbox™ software, filters in FDATool use double-precision
floating point.

Step 2 — Select an Export Data Type in the Export to CCS IDE Dialog.
Use the export data type indicated by the Export suggested parameter in
the Export to CCS IDE dialog box. Refer to the following note.

Though Step 2 insists you use the Export suggested parameter, you may
find it useful to select the Export as option and select an export data type
other than the one suggested. If you deviate from the suggested data type,
the exported filter coefficients can be very different from the coefficients of
the filter you designed in FDATool.

Note If you design your filter to use an unsupported data type, the Export to
CCS IDE dialog box rounds the filter word length up to the next supported
data type, and maintains the specified difference between the word length and
fraction length. For example, for a filter design with 14-bit word length and
11-bit fraction length, the Export suggested parameter sets the export data
type to a signed 16-bit integer with a 13-bit fraction length.

5-9

5 Exporting Digital Filters From FDATool to CCS IDE

Tutorial — Exporting Filters from FDATool to CCS IDE

In this section...

“Descriptions of the Two Tutorial Tasks” on page 5-10
“Setting Up for the Tutorial” on page 5-10
“Task 1 — Export Filter by Generating an ANSI C Header File” on page 5-11
“Task 2 — Export Filter by Writing Directly to Processor Memory” on page
5-18

This tutorial shows you how to export filters from FDATool to CCS IDE with
the Export to Code Composer Studio (tm) IDE dialog box. The tutorial covers
exporting filters by generating ANSI C header files, and by writing filter
coefficients directly to the processor memory. Also see the previous section,
“Guidelines on Exporting Filters from FDATool to Code Composer Studio
IDE” on page 5-3.

Descriptions of the Two Tutorial Tasks
“Task 1 — Export Filter by Generating an ANSI C Header File” on page 5-11
— You should complete this task before starting Task 2. Exporting a filter by
generating a C header file not only exports your filter; it also ensures that you
allocate enough processor memory for the exported filter coefficients.

“Task 2 — Export Filter by Writing Directly to Processor Memory” on page
5-18 — You should complete Task 1 before starting this task to ensure
you allocate enough processor memory for the filter coefficients to export.
Exporting directly to processor memory is useful when you want to repeatedly
tune your filter in FDATool, and then export the updated filter coefficients
directly to the allocated processor memory.

Setting Up for the Tutorial
To complete this tutorial, you must install both Signal Processing Toolbox
and Target Support Package TC6. You do not need to open CCS IDE before
starting the tutorial.

5-10

Tutorial — Exporting Filters from FDATool to CCS IDE

Task 1 — Export Filter by Generating an ANSI C
Header File
In Task 1, you export a filter by generating a ANSI C header file. The
generated ANSI C header file defines global arrays of filter coefficients that
correspond to static memory locations in the final processor program. By
generating a program file from the ANSI C header file and loading the
program file into your processor, not only do you export your filter, but you
ensure that you allocated enough memory for the exported filter coefficients.
In Task 2, you write filter coefficients directly to the memory allocated in
Task 1. You should complete Task 1 before starting Task 2.

Step 1 — Open FDATool
Open FDATool by entering fdatool in the MATLAB command window.

fdatool % Open FDATool

FDATool opens with a default lowpass equiripple FIR filter displayed. The
filter that you export in this tutorial is an IIR filter (to match the tutorial,
design an IIR filter by changing Design Method from FIR to IIR).

5-11

5 Exporting Digital Filters From FDATool to CCS IDE

Step 2 — Open the Export to Code Composer Studio(tm) IDE
Dialog Box
Open the Export to Code Composer Studio(tm) IDE dialog box by selecting
processors > Code Composer Studio(tm) IDE from the FDATool menu
bar.

5-12

Tutorial — Exporting Filters from FDATool to CCS IDE

5-13

5 Exporting Digital Filters From FDATool to CCS IDE

Step 3 — Set the Export Mode
Set Export mode to Generate C header file.

Step 4 — Name the Filter Coefficient Variables
You must name the variables that store the filter coefficients in the generated
ANSI header file by setting the Numerator, Denominator, Numerator
length, and Denominator length parameters. (These correspond to the four
variables for the numerator filter coefficients, denominator filter coefficients,
number of numerator coefficients, and number of denominator coefficients.)
For this tutorial, use the default variable names, NUM, DEN, NL, and DL. Use NS
for the number of filter sections variable name, as provided by the dialog box.

5-14

Tutorial — Exporting Filters from FDATool to CCS IDE

The generated ANSI header file will define global arrays, NUM, DEN, NL, and DL,
that correspond to static memory locations containing the filter coefficients in
the final processor program.

Step 5 — Select a Data Type
Use the suggested data type to export your filter coefficients by selecting
the Export suggested parameter.

Step 6 — Select a Board
If you know the board number and processor number of your DSP, select your
processor by setting the DSP Board # and DSP Processor # values.

5-15

5 Exporting Digital Filters From FDATool to CCS IDE

Alternatively, click Select processor, which opens the Selection Utility:
Embedded IDE Link CC dialog box when you have more than one board
defined in the CCS setup. Select the board name and processor name of the
DSP and click Done to set the DSP Board # and DSP Processor # values in
the Export to Code Composer Studio(tm) IDE dialog box.

If you have only one board or simulator, Embedded IDE Link CC opens the
Selecting Boardnum & Procnum dialog box and sets your processor to the
board and processor automatically.

Step 7 — Generate the ANSI Header File
Click Generate to generate the ANSI header file. FDATool prompts you for
a file name to save the generated header file with the .h extension, and a
location to store the file. In addition, this opens the generated ANSI header
file in CCS IDE. (CCS IDE will be opened for you if you did not have it open.)

Step 8 — Export the Filter by Generating a Program File
Add the generated ANSI header file to an appropriate project, generate a
program file, and load the program file into your DSP. The program file
allocates static memory locations in the processor, and writes the filter
coefficients to these locations. Refer to the following note.

5-16

Tutorial — Exporting Filters from FDATool to CCS IDE

By completing steps 1 through 8, you allocated processor memory for the filter
coefficients and exported the coefficients to these memory locations. Now you
can tune the filter in FDATool, then export the updated filter coefficients
directly to the allocated memory locations as described in Task 2 of this
tutorial.

Note You can edit the generated ANSI header file so the associated program
file allocates extra processor memory. This allows you to change your filter
and export the new filter coefficients directly to the allocated memory. You do
not have to worry about whether there is enough memory. For example, in the
following header file, you could modify const real64_T NUM[47] = {...} to
real64_T NUM[256] = {...} to allow NUM to store up to 256 numerator filter
coefficients rather than 47.

Contents of the ANSI Header File Generated in Task 1

/*

* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

*

* Generated by MATLAB(R) 7.0.1 and the Signal Processing Toolbox 6.2.1.

*

* Generated on: xx-xxx-xxxx 14:57:57

*

*/

/*

* Discrete-Time FIR Filter (real)

* -------------------------------

* Filter Structure : Direct-Form FIR

* Filter Length : 51

* Stable : Yes

* Linear Phase : Yes (Type 1)

*/

/* General type conversion for MATLAB generated C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

5-17

5 Exporting Digital Filters From FDATool to CCS IDE

* M:\perfect\matlab\extern\include\tmwtypes.h

*/

const int BL = 51;

const real64_T B[51] = {

-0.0009190982084683,-0.002717696026596,-0.002486952759832, 0.003661438383507,

0.01365092523066, 0.01735116590109, 0.007665306190422,-0.006554718869642,

-0.007696784037065, 0.006105459421394, 0.01387391574864,0.0003508617282909,

-0.01690892543669,-0.008905642749159, 0.01744112950085, 0.02074504452761,

-0.01229649425194, -0.03424086590958,-0.001034529605572, 0.0477903055208,

0.02736303791485, -0.05937951883105, -0.08230702592923, 0.06718690943287,

0.3100151770903, 0.4300478803435, 0.3100151770903, 0.06718690943287,

-0.08230702592923, -0.05937951883105, 0.02736303791485, 0.0477903055208,

-0.001034529605572, -0.03424086590958, -0.01229649425194, 0.02074504452761,

0.01744112950085,-0.008905642749159, -0.01690892543669,0.0003508617282909,

0.01387391574864, 0.006105459421394,-0.007696784037065,-0.006554718869642,

0.007665306190422, 0.01735116590109, 0.01365092523066, 0.003661438383507,

-0.002486952759832,-0.002717696026596,-0.0009190982084683

};

Task 2 — Export Filter by Writing Directly to Processor
Memory
In Task 2 you export a filter by writing the filter coefficients directly to
processor memory. Before starting this task, allocate enough memory for the
filter coefficients by completing “Task 1 — Export Filter by Generating an
ANSI C Header File” on page 5-11. After you allocate enough memory, you
can tune your filter in FDATool and export the updated filter coefficients
directly to the allocated memory by following the steps in this task. For
important guidelines on writing directly to processor memory, refer to
“Cautions Regarding Writing Directly to Memory” on page 5-5.

Step 9 — Tune Your Filter in FDATool
Tune your filter coefficients in FDATool to improve its performance. Set
the numerical precision of your filter by using the Quantized Filter pane in
FDATool, available when you install Filter Design Toolbox. If you do not
have Filter Design Toolbox software, your filters in FDATool have the default
precision, double-precision floating point.

5-18

Tutorial — Exporting Filters from FDATool to CCS IDE

If you have the Export to Code Composer Studio(tm) IDE dialog box open from
Task 1, the dialog box updates itself as you tune the filter in FDATool. If you
closed the dialog box, reopen it as described in “Step 2 — Open the Export to
Code Composer Studio(tm) IDE Dialog Box” on page 5-12.

Note If you allocated exactly enough memory for the filter coefficients in
Task 1, do not tune your filter such that it requires more memory than did
the original filter (by increasing the filter order, for example). If you need
more memory for your updated filter, allocate extra memory by editing the
generated ANSI C header file from Task 1 (as described in the previous note),
generating a program file, and loading the program file into your processor.

Step 10 — Set the Export Mode
Set Export mode to Write directly to memory. Clear the parameter
Disable memory transfer warnings so that you get a warning if your
processor does not support the export data type.

5-19

5 Exporting Digital Filters From FDATool to CCS IDE

Step 11 — Input Filter Variable Names
To write to the memory allocated in Task 1, enter the names of the variables
in the processor symbol table corresponding to the allocated memory. These
names are the same as the names of the filter coefficient variables in the
ANSI C header file from Task 1: NUM, DEN, NL, and DL. You do not need to
type these names in, because they are the default setting of the Numerator,
Denominator, Numerator length, and Denominator length parameters.
(These parameters correspond to the memory locations that store the
numerator filter coefficients, denominator filter coefficients, number of
numerator coefficients, and number of denominator coefficients.)

Step 12 — Set All Other Parameters for Export as in Task 1
Select an export data type and indicate your DSP as in Steps 5 and 6 of Task 1.

Step 13 — Load the Program File
Load the program file associated with your processor into CCS IDE to activate
the program symbol table. The program file must contain the global variables
you entered in Step 11.

5-20

Tutorial — Exporting Filters from FDATool to CCS IDE

Step 14 — Export by Writing Directly to Processor Memory
Click Apply to export your filter. Before the filter export begins, a warning
dialog box appears if your processor does not support the export data type.
You can choose to continue to export the filter, or to cancel the export.
To prevent this warning dialog box from appearing, select the parameter
Disable memory transfer warnings in Step 10.

Step 15 — Continue Optimizing Filter Performance
Continue to optimize filter performance by retuning your filter in FDATool
and exporting the updated filter coefficients directly to processor memory.
Because you already set up the export process to write to specific memory
locations, you can click Apply to export updated coefficients to these same
memory locations.

When the Export to Code Composer Studio (tm) IDE dialog box is open, it
automatically updates as you tune your filter in FDATool, and preserves the
parameter settings from Steps 10 through 13. The dialog box stays open
as long as you do not click Cancel or OK. Keep the dialog box open when
exporting multiple times to the same memory locations so you do not have to
repeat Steps 10 through 13, and can just click Apply.

Where to Find More Information
For more information on exporting filters from FDATool to CCS IDE, refer
to“Guidelines on Exporting Filters from FDATool to Code Composer Studio
IDE” on page 5-3, which contains the following sections:

• “Selecting the Export Mode” on page 5-4

• “Cautions Regarding Writing Directly to Memory” on page 5-5

• “Variables and Memory Necessary for Filter Export” on page 5-6

5-21

5 Exporting Digital Filters From FDATool to CCS IDE

• “Selecting the Export Data Type” on page 5-8

To learn to use FDATool, refer to the section “Filter Design and Analysis Tool”
in the Signal Processing Toolbox documentation.

Also refer to the reference pages for the following Embedded IDE Link CC
functions:

• address

• ticcs

• write

5-22

6

Function Reference

Operations on Objects for CCS IDE
(p. 6-2)

Work with links for CCS IDE

Operations on Objects for RTDX
(p. 6-4)

Work with links to RTDX

Data Manipulation (p. 6-5) Manipulate data on processor from
MATLAB software

Hardware-in-the-Loop Processing
(p. 6-5)

Work with hardware in the loop

6 Function Reference

Operations on Objects for CCS IDE
activate Make specified project, file, or build

configuration active in CCS IDE
add Add files or new typedef to active

project in CCS
address Address and page for entry in symbol

table in CCS IDE
animate Run application on processor to

breakpoint
build Build active project in CCS IDE
ccsboardinfo Information about boards and

simulators known to CCS IDE
cd Change CCS IDE working directory
clear Remove links to CCS IDE and RTDX

interface, or clear type entries in
type objects

close Close CCS IDE files or RTDX
channel

delete Remove debug points in addresses or
source files in CCS

dir List files in current CCS IDE
working directory

display Display properties of link to CCS
IDE or RTDX link

get Access object properties
halt Terminate execution of process

running on processor
info Information about processor
insert Add debug point to source file or

address in CCS

6-2

Operations on Objects for CCS IDE

isreadable Determine whether MATLAB
software can read specified memory
block

isrtdxcapable Determine whether processor
supports RTDX

isrunning Determine whether processor is
executing process

isvisible Determine whether CCS IDE is
running

iswritable Determine whether MATLAB
software can write to specified
memory block

load Transfer program file (*.out, *.obj)
to processor in active project

new Create and open text file, project, or
build configuration in CCS IDE

open Open channel to processor or load
file into CCS IDE

profile Code execution and stack usage
profile report

read Data from memory on processor or
in CCS

regread Value from processor register
regwrite Write data values to registers on

processor
reload Reload most recent program file to

processor signal processor
remove Remove file from active CCS IDE

project
reset Reset processor
restart Restore program counter to entry

point for current program

6-3

6 Function Reference

run Execute program loaded on processor
set Set CCS IDE and RTDX interface

properties of ticcs object
symbol Program symbol table from CCS IDE
ticcs Create object that refers to CCS IDE
visible Set whether CCS IDE window is

visible while CCS runs
write Write data to memory on processor

Operations on Objects for RTDX
close Close CCS IDE files or RTDX

channel
configure Define size and number of RTDX

channel buffers
disable Disable RTDX interface, specified

channel, or all RTDX channels
display Display properties of link to CCS

IDE or RTDX link
enable Enable RTDX interface, specified

channel, or all RTDX channels
flush Flush data or messages from

specified RTDX channels
get Access object properties
isenabled Determine whether RTDX link is

enabled for communications
msgcount Number of messages in read-enabled

channel queue
open Open channel to processor or load

file into CCS IDE

6-4

Data Manipulation

readmat Matrix of data from RTDX channel
readmsg Read messages from specified RTDX

channel
set Set CCS IDE and RTDX interface

properties of ticcs object
writemsg Write messages to specified RTDX

channel

Data Manipulation
cast Change data type of object in

Embedded IDE Link CC
deref Object that accesses object pointed

to by pointer object
read Data from memory on processor or

in CCS
write Write data to memory on processor

Hardware-in-the-Loop Processing
declare Define ANSI C function declaration

in MATLAB environment for CCS
application

getinput Specified input argument object from
function object

getoutput Access output from function object
read Data from memory on processor or

in CCS

6-5

6 Function Reference

resume Resume execution of stopped or
paused function

run Execute program loaded on processor
write Write data to memory on processor

6-6

7

Functions — Alphabetical
List

activate

Purpose Make specified project, file, or build configuration active in CCS IDE

Syntax activate(cc,'objectname','type')

Description activate(cc,'objectname','type') makes the object specified by
objectname and type the active document window or project in CCS
IDE. While you must include the link cc, it does not identify the project
or file you make active. activate accepts one of three strings for type

String Description

'project' Makes an existing project in CCS IDE active
(current). You must include the .pjt extension
in objectname.

'text' Makes the specified text file in CCS IDE the active
document window. Include the file extension in
objectname when you specify the file.

'buildcfg' Makes the specified build configuration in CCS
IDE active. Note that build configuration is
similar to project configuration.

To specify the project file, text file, or build configuration, objectname
must contain the full project name with the .pjt extension, or the full
path name and extension for the text file.

When you activate a build configuration, activate applies to the active
project in CCS IDE. If the build configuration you specify in activate
does not exist in the active project, MATLAB software returns an error
that the specified configuration does not exist in the project. Fix this
error by using activate to make the correct project active, then use
activate again to select the desired build configuration.

Examples Create two projects in CCS IDE and use activate to change the active
project, build configuration, and document window.

cc=ticcs;

7-2

activate

visible(cc,1)

Now make two projects in CCS IDE.

new(cc,'myproject1.pjt','project')
new(cc,'myproject2.pjt')

In CCS IDE, myproject2 is now the active project, because you just
created it. With two projects in CCS IDE, add a new build configuration
to the second project.

new(cc,'Testcfg','buildcfg')

If you switch to CCS IDE, you see myproject2.pjt in bold lettering in
the project view, signaling it is the active project. When you check the
active configuration list, you see three build configurations—Debug,
Release, and Testcfg. Currently, Testcfg is the active build
configuration in myproject2.

Finally, add a text file to myproject1 and make it the active document
window in CCS IDE. In this case, you add the source file for the ADC
block.

activate(cc,'myproject1.pjt','project') % Makes myproject1 the active project.

add(cc,'c6711dsk_adc.c')

activate(cc,'c6711dsk_adc.c','text')

See Also build, new, remove

7-3

add

Purpose Add files or new typedef to active project in CCS

Syntax add(cc,'filename')
info = add(cc.type,'typedefname','datatype')

Description Use add when you have an existing file to add to your active project in
CCS. You can have more than one CCS IDE open at the same time,
such as C5000 and C6000 IDE instances. cc identifies which CCS
IDE instance gets the file, and it identifies your board or processor.
Note that cc does not identify your project in CCS — it identifies only
your hardware or simulator. add puts the file specified by filename in
the active project in CCS. Files you add must exist and be one of the
supported file types shown in the next table.

When you add files, CCS puts the files in the appropriate folder in the
project, such as putting source files with the .c extension in the Source
folder and adding .lib files to the Libraries folder. You cannot change
the destination folder in your CCS project. Using add is identical to
selecting Project > Add Files to Project in CCS IDE.

To specify the file to add, filename must be the full path name to the
file, unless your file is in your CCS working directory or in a directory
on your MATLAB environment path. Embedded IDE Link CC searches
for files first in your CCS IDE working directory, then in directories on
your MATLAB path.

You can add the following file types to a project through add.

File Types and Extensions Supported by add and CCS IDE

File Type
Extensions
Supported CCS Project Folder

C/C++ source files .c, .cpp, .cc, .ccx,
.sa

Source

Assembly source files .a*, .s* (excluding
.sa, refer to C/C++
source files)

Source

7-4

add

File Types and Extensions Supported by add and CCS IDE
(Continued)

File Type
Extensions
Supported CCS Project Folder

Object and library
files

.o*, .lib Libraries

Linker command file .cmd Project Name

DSP/BIOS file .cdb* DSP/BIOS Config

Visual Linker Recipe rcp Replaces the .cmd
file, or goes under
Project Name

Use activate to change your active project in CCS IDE or switch to the
CCS IDE and change the active directory within CCS.

info = add(cc.type,'typedefname','datatype') adds the new type
definition typedefname to the type class in cc. Return value info
contains the information about your custom data type. Your new data
type typedefname has type datatype. As long as the cc object exists,
the information about your new typedef exists as well. Including the
left side argument is an option. Omitting the left side argument does
not prevent add from making additions to the type objects.

Examples Create a new project and to it add a source file and a build configuration.
To do this task from MATLAB software, use new to make your project in
CCS IDE, then use add to put the required files into your new project.

cc=ticcs

TICCS Object:

API version : 1.2

Processor type : TMS320C64127

Processor name : CPU_1

Running? : No

7-5

add

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

cc.visible(1) % Optional. Makes CCS IDE visible on your desktop.

new(cc,'myproject','project');

% Now add a C source file

add(cc,'c6711dsk_adc.c'); % Adds the source file for the ADC block.

In CCS IDE, c6711dsk_adc.c shows up in myproject, in the Source
folder. Now add a new build configuration to myproject. After you add
the new configuration, you can see it on the configurations list in CCS
IDE, along with the usual Debug and Release configurations:

new(cc,'Testcfg','buildcfg')

Adding a new type definition to the type object is straightforward:

cc=ticcs;

info = add(cc.type, 'mynew typedef','int32');

info =

type: 'int32'

size: 1

uclass: 'numeric'

cc.type

Defined types : Void, Float, Double, Long, Int, Short, Char, mynewtypedef

See Also activate, cd, open, remove

7-6

addregister

Purpose Append registers to list of saved registers in property savedregs of
function objects

Syntax addregister(ff,regname)
addregister(ff,regnamelist)

Description addregister(ff,regname) adds register regname to the list of registers
to preserve or restore after a function is finished running. ff identifies
the program function to which the register applies. You can add any
register to the saved registers list.

Note addregister is the only way to add registers to the saved
registers (savedregs) listing.

To remove a register from the list, use deleteregister.

When you issue the createobj command to create a handle to a
function, the compiler creates the default list of saved registers. When
you execute the function, the compiler saves the registers in the list,
runs its process, and after completing its process, uses the contents of
the saved registers to restore the saved registers to their initial state .

After a function generates a result, the execution process returns the
saved registers to their initial states and values. When you add a
register to the saved registers list, the added register is restored and
saved with the other registers in the list.

For each processor family, the default list of saved registers changes,
as shown in these sections. The default lists include registers that the
compiler saves and that MATLAB software requires for Embedded IDE
Link CC to operate correctly.

Default Saved Registers for C28x™ Processors

AL, AH, AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7, XAR0, XAR1,
XAR2, XAR3, XAR4,XAR5, XAR6, XAR7, SP, T, TL, PL, PH, DP

7-7

addregister

Default Saved Registers for C54x™ Processors

AR1, AR6, AR7, and SP (required by MATLAB software, not the
compiler)

Default Saved Registers for C55x Processors

T0, T1, T2, T3, TRN0, TRN1, AR0, AR1, AR2, AR3, AR4, AR5, AR6,
AR7, XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7, AC0,
AC1, AC2, AC3

Default Saved Registers for C62x™ and C67x™ Processors

A0, A2, A6, A7, A8, A9. Also B0, B1, B2, B4, B5, B6, B7, B8, B9.
To support MATLAB software requirements, B15 (the stack pointer)
gets saved as well.

Registers A3, A4, A5, and B3 — your function must preserve these but
they are not needed for reading function output.

Default Saved Registers for C64x™ Processors

A0, A2, A6, A7, A8, A9, A16, A17, A19, A19, A20, A21, A22, A23, A24,
A25, A26, A27, A28, A29, A30, A31. Also B0, B1, B2, B4, B5, B6, B7,
B8, B9, B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27,
B28, B29, B30, B31. To support MATLAB software requirements, B15
(the stack pointer) gets saved as well.

Register B15 — not required by the compiler, but is required by
MATLAB software and is saved.

Registers A3, A4, and A5 — function must preserve these but they are
needed for reading function output.

Default Saved Registers for R1x and R2x Processors

R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14,R15

addregister(ff,reglist) appends the register names in reglist to
the list of save-on-call (SOC) registers ff.savedregs that get preserved
when a task is finished. ff identifies the function to which the register
applies. reglist is a cell array that contains the names of registers on
your processor that must be preserved during the changes that occur

7-8

addregister

during operation. You can also enter one register name in reglist
as a string.

When you add entries to the existing SOC list, follow these
recommendations:

• Add the entries before you execute any write, run, or execute
commands

• Add the entries immediately after you create the function object you
are planning to use

These considerations ensure that the register values saved are the
original register values.

See Also deleteregister

7-9

address

Purpose Address and page for entry in symbol table in CCS IDE

Syntax a = address(cc,'symbolstring')

Description a = address(cc,'symbolstring') returns the memory address and
page values for the symbol identified by ’symbolstring’ in CCS IDE.
address returns the symbol from the most recently loaded program
in CCS IDE. In some instances this might not be the program loaded
on the processor to which cc is linked. By returning the address and
page values as a structure, your programs can use the values directly.
If you provide an output argument, the output a contains the 1-by-2
vector of [address page]. For address to work, symbolstring must
represent a valid entry in the symbol table. To ensure that address
returns information for the correct symbol, use the proper case when
you enter symbolstring because symbol names are case-sensitive;
’symbolstring’ is not the same as ’Symbolstring’.

If address does not find a symbol table entry that matches
symbolstring, the first cell of a is returned empty. Notice that this
function returns only the first matching symbol in the symbol table.
The output argument is a cell array where each row in a presents the
symbol name and address in the table. Each returned symbol address
comprises a two element vector with the symbol page as the second
element. For example, this table shows a few possible elements of a,
and their interpretation.

a Array Element Contents of the Element

a{1} String reflecting the symbol name. If address
found a symbol that matches symbolstring,
this is the same as symbolstring. Otherwise
this is empty.

a{2}(1) Address or value of symbol entry.
a{2}(2) Memory page value. For TI’s C6000

processors, the page is 0.

7-10

address

Examples After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol ’ddat’ from
the symbol table in CCS IDE.

ddatv = read(cc,address(cc,'ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns
ddat to MATLAB software as a double-precision value as specified by
the string ’double’.

To change values in the symbol table, use address with write:

write(cc,adddress(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

After executing this write operation, ddat contains double-precision
values for π, 12.3, e-1, and sin(π/4). Use read to verify the contents
of ddat:

ddatv = read(cc,address(cc,'ddat'),'double',4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load, read, symbol, write

7-11

animate

Purpose Run application on processor to breakpoint

Syntax animate(cc)

Description animate(cc) starts the processor application, which runs until it
encounters a breakpoint in the code. At the breakpoint, application
execution halts and CCS Debugger returns data to CCS IDE to update
all windows that are not connected to probe points. After updating the
display, the application resumes execution and runs until it encounters
another breakpoint. The run-break-resume process continues until you
stop the application from MATLAB software with the halt function or
from CCS IDE.

When you are running scripts or files in MATLAB software, you might
find that animate provides a useful way to update the CCS IDE with
information as your script or program runs.

Using animate with multiprocessor boards

When you use animate with a ticcs object cc that comprises more than
one processor, such as an OMAP processor, the method applies to each
processor in your cc object. This causes each processor to run a loaded
program just as it does for the single processor case.

See Also halt, restart, run

7-12

build

Purpose Build active project in CCS IDE

Syntax build(cc,timeout)
build(cc)
build(cc,'all',timeout)
build(cc,'all')
[result,numwarns]=build(...)

Description build(cc,timeout) incrementally rebuilds your active project in CCS
IDE. In an incremental build:

• Files that you have changed because your last project build process
get rebuilt or recompiled.

• Source files rebuild when the time stamp on the source file is later
than the time stamp on the object file created by the last build.

• Files whose time stamps have not changed do not rebuild or
recompile.

This incremental build is identical to the incremental build in CCS IDE,
available from the CCS IDE toolbar.

After building the files, CCS IDE relinks the files to create the program
file with the .out extension. To determine whether to relink the output
file, CCS IDE compares the time stamp on the output file to the time
stamp on each object file. It relinks the output when an object file time
stamp is later than the output file time stamp.

To reduce the compile and build time, CCS IDE keeps a build
information file for each project. CCS IDE uses this file to determine
which file needs to be rebuilt or relinked during the incremental build.
After each build, CCS IDE updates the build information file.

7-13

build

Note CCS IDE opens a Save As dialog box when the requested project
build overwrites any files in the project. You must respond to the dialog
box before CCS IDE continues the build. The dialog box may not be
visible when it opens and CCS IDE, MATLAB software, and other
applications can appear to be frozen until you respond to the dialog box.
It may be hidden by open windows on your desktop.

To limit the time that build spends performing the build, the optional
argument timeout stops the process after timeout seconds. timeout
defines the number of seconds allowed to complete the required compile,
build, and link operation. If the build process exceeds the timeout
period, build returns an error in MATLAB software. Generally, build
causes the processor to initiate a restart even when the period specified
by timeout passes. Exceeding the allotted time for the operation
usually indicates that confirmation that the build was finished was not
received before the timeout period passed. If you omit the timeout
option in the syntax, build defaults to the global timeout defined in cc.

build(cc) is the same as build(cc,timeout) except that when you
omit the timeout option, build defaults to the timeout for build, 1000
s. This timeout value overrides the default timeout setting for cc.

build(cc,'all',timeout) completely rebuilds all of the files in
the active project. This full build is identical to selecting Project >
Rebuild All from the CCS menu bar. After rebuilding all files in the
project, build performs the link operation to create a new program file.

To limit the time that build spends performing the build, optional
argument timeout stops the process after timeout seconds. timeout
defines the number of seconds allowed to complete the required compile,
build, and link operation.

If the build process exceeds the timeout period, build returns an error
in MATLAB software. Generally, build causes the processor to initiate
a restart even when the period specified by timeout passes. Exceeding
the allotted time for the operation usually indicates that confirmation
that the build was finished was not received before the timeout period

7-14

build

passed. If you omit the timeout option in the syntax, build defaults to
the global timeout defined in cc.

build(cc,'all') is the same as build(cc,'all',timeout) except
that when you omit the timeout option, build defaults to the timeout
set for build only, 1000 s.

[result,numwarns]=build(...) returns two output values that report
the results of the build operation. For a successful build, the output
arguments are the following:

• result equal to 1 for the build

• numwarns reports the number of build warnings that occurred during
the build.

When the build is not successful, build displays an error and a message
that contains the build string in the MATLAB software Command
Window.

Examples To demonstrate building a project from MATLAB software, use CCS
IDE to load a project from the Texas Instruments software tutorials.
For this example, open the project file volume.pjt from the Tutorial
folder where you installed CCS IDE. (You can open any project you
have for this example.)

Now use build to build the project:

cc=ticcs

TICCS Object:
API version : 1.2
Processor type : TMS320C64127
Processor name : CPU_1
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

7-15

build

RTDX channels : 0

build(cc,'all',20)

You just completed a full build of the project in CCS IDE. On the Build
pane in CCS IDE, you see the record of the build process and the results.
Now, make a change to a file in the project in CCS IDE and save the
file. Then rebuild the project with an incremental build.

build(cc,20)

When you look at the Build pane in CCS IDE, the log shows that the
build only occurred on the file or files that you changed and saved.

See Also activate, isrunning, open

7-16

cast

Purpose Change data type of object in Embedded IDE Link CC

Syntax objname2 = cast(objname,datatype)
objname2 = cast(objname,datatype,size)

Description objname2 = cast(objname,datatype) returns objname2, a copy of
objname, whose represent, storagepervalue, and wordsize properties
are changed so objname2 supports the data type specified by datatype.
Input argument datatype can be any supported data type. After the
cast operation, read or write operations apply the appropriate data
conversion to implement on your processor the data type specified by the
represent, storagepervalue, and wordsize properties of objname2.

The following data types work as input arguments to cast.

datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'unsigned'

'uint8' 'unsigned'

'long double' 'float'

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'/'unsigned'

'unsigned long' 'signed'

'unsigned int' 'unsigned'

7-17

cast

datatype String represent Property Value

'unsigned char' 'unsigned'

’Q0.15’ 'fract'

’Q0.31’ 'fract'

Note pointer and rpointer objects respond differently when you use
cast. Refer to “Using cast with pointer and rpointer Objects” on page
7-19 for more information about the supported data types for pointer
or rpointer objects.

Various Texas Instruments processors restrict the sizes of the data types
used by objects in Embedded IDE Link CC. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

represent
Property Value

C5000
Processor Word
Size Limits

C6000 Processor Word
Size Limits

’float' 32, 64 bits 32,64 bits
’signed’ 16, 24, 32, 40, 48,

56, 64 bits
8, 16, 24, 32, 40, 48, 56, 64
bits

'unsigned' 16, 24, 32, 40, 48,
56, 64 bits

8, 16, 24, 32, 40, 48, 56, 64
bits

'binary' 16, 24, 32, 40, 48,
56, 64 bits

8, 16, 24, 32, 40, 48, 56, 64
bits

'fract'

Using the properties of the objects, you change the word size by
changing the value of the storageunitspervalue property of the object.
Note that you cannot change the bitsperstorageunit property value,
which depends on the processor and whether the object represents a
memory location or a register.

7-18

cast

cast applies to any object that has the represent, storagepervalue,
and wordsize properties. function, ticcs, and rtdx objects do not use
the represent property and do not support cast.

A note — you could change the properties for objname2 directly with
set when you work with less common data types. Generally, we
recommend you use cast to change the data type for an object, and
consider convert as well.

objname2 = cast(objname,datatype,size) returns objname2, a
copy of objname, with the specified data type for the represent,
storagepervalue, and wordsize properties, and the size property
value set to size. For bitfield objects, size is always 1.

Using cast with pointer and rpointer Objects

Working with pointer objects and register pointer (rpointer) objects is
slightly different from using cast with numeric objects.

When you cast a pointer object, the results depend on the data type
you specify to cast to in the syntax:

• When you specify a valid pointer type for your new pointer or
rpointer object, cast creates the new pointer or rpointer object as
a pointer type. Valid pointer data types are datatype * — include
the asterisk to indicate this is a pointer.

• When you specify a nonpointer data type for your new object, cast
creates a new object that is no longer a pointer and does not access
the referent that the original object accessed. Trying to cast to a
nonpointer data type causes an error in MATLAB software. Data
types that do not support pointers are

- All ANSI C native data types without the asterisk that indicates
this is a pointer

- enum (enumerated)

- string

- struct

7-19

cast

Examples If your project includes the variables used in the three examples
that follow, try them out to see cast at work. Without the specified
variables, the examples do not run — read the examples to see the
input and output from cast.

Cast the Data Type from int16 to Q0.31

After you create a ticcs object, use cast to recast a variable from data
type int16 to Q0.31.

Create the int16 indirectly because you cannot create handles to int16
data types in one step:

g_int16=createobj(cc,'g_float')
convert(g_int16,'int16')
cast(g_int16,'Q0.31')

Cast the Data Type from signed char to Q0.15

After you create a ticcs object, use cast to recast a variable from data
type signed char to Q0.15.

Create the unsigned char from a signed char and cast from there to
Q0.15:

g_uchar=createobj(cc,'g_schar')
cast(g_uchar,'Q0.15')

Cast the Data Type from double to uint32

After you create a ticcs object, use cast to recast a variable from data
type double to uint32.

Create the double data type variable and cast it to a uint32:

g_double=createobj(cc,'double')
cast(g_double,'uint32')

See Also convert

7-20

ccsboardinfo

Purpose Information about boards and simulators known to CCS IDE

Syntax ccsboardinfo
boards = ccsboardinfo

Description ccsboardinfo returns configuration information about each board
and processor installed and recognized by CCS. When you issue the
function, ccsboardinfo returns the following information about each
board or simulator.

Installed Board
Configuration Data

Configuration
Item Name Description

Board number boardnum The number that CCS assigns to the board or
simulator. Board numbering starts at 0 for
the first board. This is also a property used
when you create a new link to CCS IDE.

Board name boardname The name assigned to the board or simulator.
Usually, the name is the board model name,
such as TMS320C67xx evaluation module.
If you are using a simulator, the name tells
you which processor the simulator matches,
such as C67xx simulator. If you renamed
the board during setup, your assigned name
appears here.

7-21

ccsboardinfo

Installed Board
Configuration Data

Configuration
Item Name Description

Processor number procnum The number assigned by CCS to the
processor on the board or simulator. When
the board contains more than one processor,
CCS assigns a number to each processor,
numbering from 0 for the first processor on
the first board. For example, when you have
two recognized boards, and the second has
two processors, the first processor on the
first board is procnum=0, and the first and
second processors on the second board are
procnum=1 and procnum=2. This is also a
property used when you create a new link
to CCS IDE.

Processor name procname Provides the name of the processor. Usually
the name is CPU, unless you assign a
different name.

Processor type proctype Gives the processor model, such as
TMS320C6x1x for the C6xxx series
processors.

Each row in the table that you see displayed represents one digital
signal processor, either on a board or simulator. As a consequence,
you use the information in the table in the function ticcs to identify a
selected board in your PC.

boards = ccsboardinfo returns the configuration information about
your installed boards in a slightly different manner. Rather than
returning the table containing the information, you get a listing of
the board names and numbers, where each board has an associated
structure named proc that contains the information about each
processor on the board. For example

boards = ccsboardinfo

7-22

ccsboardinfo

returns

boards =

name: 'C6xxx Simulator (Texas Instruments)'

number: 0

proc: [1x1 struct]

where the structure proc contains the processor information for the
C6xxx simulator board:

boards.proc

ans =

name: 'CPU'

number: 0

type: 'TMS320C6200'

Reviewing the output from both function syntaxes shows that the
configuration information is the same.

When you combine this syntax with the dot notation used to access the
elements in a structure, the result is a way to determine which board to
connect to when you construct a link to CCS IDE. For example, when
you are creating a link to a board in your PC, the dot notation provides
the means to set the board by issuing the command with the boardnum
and procnum properties set to the entries in the structure boards. For
example, when you enter

boards = ccsboardinfo;

boards(1).name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on
the second board. To create a link to the second processor on the second
board, use

cc = ticcs('boardnum',boards(1).number,'procnum',...

7-23

ccsboardinfo

boards(1).proc(2).name);

Examples On a PC with both a simulator and a DSP Starter Kit (DSK) board
installed,

ccsboardinfo

returns something similar to the following table. Your display may
differ slightly based on what you called your boards when you configured
them in CCS Setup Utility:

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

1 C6xxx Simulator (Texas Instrum ..0 CPU TMS320C6200

0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs,
ccsboardinfo returns the following table, or one similar to it:

Board Board Proc Processor Processor

Num Name Num Name Type

-- ---------------------------------- --- -------------------

2 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6200

1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200

1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200

0 C64xx Simulator (Texas Instru...0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs:
CPU_Primary and CPU_Secondary. Note that the C6xxx does not in fact
have two CPUs; we defined a second CPU for this example.

To demonstrate the syntax boards = ccsboardinfo, this example
assumes a PC with two boards installed, one of which has three CPUs.

Enter

ccsboardinfo

7-24

ccsboardinfo

at the MATLAB desktop prompt. You get

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ------------

1 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6211

0 C6211 DSK (Texas Instruments) 2 CPU_3 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 0 CPU_4_2 TMS320C6x1x

Now enter

boards = ccsboardinfo

MATLAB software returns

boards=
2x1 struct array with fields

name
number
proc

showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)

ans=
C6211 DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to
access the processor information. You have two boards (numbered 0 and

7-25

ccsboardinfo

1). Board 0 has three CPUs defined for it. To determine the type of the
second processor on board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board

ans=
3x1 struct array with fields:

name
number
type

indicating that this board has three processors (the 3x1 array).

The dot notation is useful for accessing the contents of a structure when
you create a link to CCS IDE. When you use ticcs to create your CCS
link, you can use the dot notation to tell CCS IDE which processor
you are using.

cc = ticcs('boardnum',boards(1).proc(1))

See Also info, ticcs

7-26

cd

Purpose Change CCS IDE working directory

Syntax cd(cc,'directory’)
wd = cd(c,'directory')
cd(cc,pwd)

Description cd(cc,'directory’) changes the CCS IDE working directory to the
directory identified by the string dir. For the change to take effect, dir
must refer to an existing directory. You can give the directory string
either as a relative path name or an absolute path name including the
drive letter. CCS IDE applies relative path names from the current
working directory.

wd = cd(c,'directory') returns the current CCS IDE working
directory in wd.

Using cc to change the CCS IDE working directory does not affect your
MATLAB environment working directory or any MATLAB environment
paths. Use the following function syntax to set your CCS IDE working
directory to match your MATLAB environment working directory.

cd(cc,pwd) where pwd calls the MATLAB function pwd that shows your
present MATLAB working directory and changes your current CCS IDE
working directory to match the path name returned by pwd.

Examples When you open a project in CCS IDE, the folder containing the project
becomes the current working folder in CCS IDE. Try opening the
tutorial project volume.mak in CCS IDE. volume.mak is in the tutorial
files from CCS IDE. When you check the working directory for CCS IDE
in the MATLAB environment, you see something like the following
result

wd=cd(cc)

wd =

D:\ticcs\c6000\tutorial\volume1

7-27

cd

where the drive letter D may be different based on where you installed
CCS IDE.

Now check your MATLAB environment working directory:

pwd

ans =

J:\bin\win32

Your CCS IDE and MATLAB environment working directories are not
the same. To make the directories the same, use the cd(cc,pwd) syntax:

cd(cc,pwd) % Set CCS IDE to use your MATLAB working directory.

pwd % Check your MATLAB working directory.

ans =

J:\bin\win32

cd(cc) % Check your CCS IDE working directory.

ans =

J:\bin\win32

You have set CCS IDE and MATLAB environment to use the same
working directory.

See Also dir, load, open

7-28

cexpr

Purpose Execute ANSI C or General Extension Language (GEL) expressions
on processor

Note cexpr produces a warning and will be removed in a future
version.

Syntax result = cexpr(cc,'expression',timeout)
result = cexpr(cc,'expression')

Description result = cexpr(cc,'expression',timeout) executes the specified
expression on the processor referred to by cc and returns a result. If
your program includes data in complex data structures and arrays,
cexpr offers one way to access the data.

To run cexpr on your processor, you must load a program to the
processor. Your processor does not need to be running the loaded
program to execute cexpr. In operation cexpr is equivalent to using the
CCS Command Line dialog box. Refer to your CCS documentation for
more information about using the command line in CCS.

When you place single quotation marks around the expression
argument, MATLAB software ignores the enclosed string, passing it to
your processor. The processor evaluates the expression and returns the
result to MATLAB software. Any part of the expression argument
that is not in single quotation marks gets evaluated by MATLAB
software and sent to the processor along with the quoted portion. Using
single quotation marks, you can combine MATLAB, GEL, and ANSI C
expressions within one cexpr command so that MATLAB software sets
a value on the processor. The processor uses the value and returns the
result to your MATLAB software workspace. Refer to “Examples” for a
code example that mixes C and MATLAB functions in one command.

After you execute the function, MATLAB software waits timeout
seconds for CCS to confirm successful completion of the operation. If
the wait exceeds timeout seconds, MATLAB software returns an error.

7-29

cexpr

Often, the timeout error means the confirmation was delayed but the
operation succeeded.

Enter expression as a string in single quotation marks defining either
a C expression, a GEL command, or a combination of both C and GEL.
CCS defines the syntax for expression as either

• A string with C syntax, whose variables reside in the local scope
of the processor

• A routine mapped to GEL functions defined in the current CCS
project

result = cexpr(cc,'expression') is the same as the preceding
syntax except the timeout value defaults to the global timeout in cc.
Use get(cc) to determine the global timeout value.

When you use cexpr, a few points can help you work effectively:

• cexpr returns a result in MATLAB software when you use a C
statement as the expression argument. In the first example syntax
in “Examples.” result = cexpr(cc,'x.a'), MATLAB software
returns result = the value of x.a on the processor. In more concrete
form, the syntax result = cexpr(cc,'x.b=10') sets x.b to 10 on
the processor and returns result = 10 to your MATLAB software
workspace.

• When your expression arguments are GEL functions, cexpr does not
return results to MATLAB software.

• Combining C and MATLAB expressions requires that you use single
quotation marks around the C expressions to isolate them from the
MATLAB interpreter. MATLAB software performs the functions it
understands and then passes the rest to the processor for evaluation.
The processor returns the result to the MATLAB desktop.

• Pay attention to the scope of the program you are accessing. Only
variables within the current scope of the program in CCS and on the
processor respond to cexpr. To access variables using cexpr, the
variables must be either global or within the current scope. When

7-30

cexpr

you try to read or write to a variable outside the current scope,
MATLAB software returns errors like the following:

??? EvalC: identifier not found: variablename.
??? EvalC: line(1), unexpected token: variablename.

Generally, variables within the program main are available without
extra effort. To get to variables defined locally in subprograms,
use breakpoints and the runtohalt input option in run to set your
program to the right scope, then use cexpr to return the information.

For more information on GEL and GEL files, refer to your CCS
documentation.

Examples cexpr covers a broad range of uses. To introduce some of the
possibilities, the following examples use both the C expression and GEL
expression forms. Because executing the examples requires that specific
variables and functions exist on the processor, you cannot execute the
code shown.

cexpr Syntax Description

result = cexpr(cc,'x.a') Returns the value of field a in structure
x stored on your processor. For this
example, expression is x.a and result
contains the value stored in x.a on the
processor.

7-31

cexpr

cexpr Syntax Description

result = cexpr(cc,'StartUp()') Executes the GEL function StartUp on
the processor. expression is 'StartUp',
a function in the GEL file that loads
each time you start CCS. Note that GEL
function names are case sensitive —
StartUp is not the same as startup.
In this example, result is NULL or
empty because GEL functions do not
generate return values. Do not use an
output argument with GEL expressions
as input arguments.

result = cexpr(cc,'x.b = 10') Sets and returns the value of the field
b in structure x. Here the assignment
statement in single quotation marks
replaces expression. x.b must be a
structure in memory on your processor
and in the current program scope. After
execution, result contains the value 10
returned from the processor.

result =cexpr(cc,['x.c[2] =' int2str(z)]) Sets the value of x.c[2] to the string
represented by integer z. In MATLAB
software, result contains the value
stored in x.c[2] as returned from the
processor. Notice that the C expression
is in single quotation marks, and the
MATLAB int2str is not. Using single
quotation marks directs MATLAB
software to ignore the C string that
applies to the processor and to evaluate
int2str.

A note about the final example — the variable z must be in your
MATLAB workspace for int2str to work. In contrast, x.c[2] defines a
value on your processor, not in the MATLAB environment.

7-32

cexpr

See Also address, read, write

7-33

cleanup

Purpose Restore CCS to previous state before running function

Syntax cleanup(ff)

Description cleanup(ff) returns CCS to the state it was in before running or
executing the function accessed by ff. After cleanup, the saved registers
for your program are restored to their state before you ran ff. Using
cleanup is entirely optional after run or execute.

See Also execute, run

7-34

clear

Purpose Remove links to CCS IDE and RTDX interface, or clear type entries
in type objects

Syntax clear(cc)
clear('all')
clear(cc.type,'all')
clear(cc.type,typedefname)

Description clear(cc) clears the link associated with cc. This is the last step in any
development effort that uses links. Clear links that you no longer need
for your work to avoid unforeseen problems. Calling clear executes the
object destructors that delete the link object and all associated memory
and resources.

clear('all') clears all existing links to CCS IDE and RTDX interface.
This is the final step in any development process that uses links.
Clear links that you no longer need for your work to avoid unforeseen
problems. Calling clear with the ’all’ option executes the object
destructors to delete all the link objects and all associated memory
and resources.

Note If a link exists when you close CCS IDE, the application does
not close. Microsoft Windows® software moves it to the background (it
becomes invisible). Only after you clear all open links to CCS IDE,
or close MATLAB software, does closing CCS IDE actually close the
application. You can check to see if CCS IDE is running by checking the
Microsoft Windows Task Manager.

clear(cc.type,'all') clears all user-defined type entries in the type
object obj.

clear(cc.type,typedefname) clears the information on the specified
user-defined type entry typedefname in the type object obj.

See Also add, ticcs, close, disable, gettypeinfo

7-35

close

Purpose Close CCS IDE files or RTDX channel

Note close(cc,filename,'text') produces a warning and will not
accept 'text' in a future version.

Syntax close(cc,'filename','type')
close(rx,'channel1','channel2',...)
close(rx,'channel')

Description close(cc,'filename','type') closes the file in CCS IDE identified by
filename of type ’type’. type identifies the type of file to close. This can
be either project files when you use ’project' for the type option, or
text files when you use 'text' for the type option. To close a specific
file in CCS IDE, filename must match exactly the name of the file to
close. If you replace filename with 'all', close terminates every open
file whose type matches the type option. File types recognized by close
include these extensions.

type String Affected files

'project' Project files with the .pjt extension.
'text' All files with these extensions —.a*, .c, .cc,

.ccx, .cdb, .cmd, .cpp, .lib, .o*, .rcp, and .s*.
Note that 'text' does not close .cfg files.

When you replace filename with the null entry [], close shuts the
current active file window in CCS IDE. When you specify ’project' for
the type option, it closes the active project.

Note close does not save files before shutting them. Closing files can
result in lost data if you have changed the files because you last saved
them. Use save to ensure that your changes are preserved before you
close files that are open.

7-36

close

close(rx,'channel1','channel2',...) closes the channels specified
by the strings channel1, channel2, and so on as defined in rx.

close(rx,'channel') closes the specified channel. When you set
channel to 'all', this function closes all the open channels associated
with rx.

To avoid conflicts, do not name channels “all” or “ALL.”

Examples Using close with Files and Projects

To clarify the different close options, here are six commands that close
open files or projects in CCS IDE.

Command Result

close(cc,'all','project') Close all open projects in
CCS IDE.

close(cc,'my.pjt','project') Close the project my.pjt.
close(cc,[],project') Close the active project.
close(cc,'all','text') Close all open text files.

This includes source file,
libraries, command files,
and others.

close(cc,'my_source.cpp','text') Close the text file
my_source.cpp.

close(cc,[],'text') Close the active file
window.

Using close with RTDX

When you plan to use RTDX to communicate with a processor, you
open and enable channels to the board and processor. For example, to
communicate with the processor on your installed board, you use open
to set up a channel, as follows:

cc = ticcs('boardnum',1,'procnum',0)

7-37

close

rx=cc.rtdx % Create an alias to the RTDX portion of this link.

open(rx,'ichan','w') % Open a channel for write access.

enable(rx,'ichan') % Enable the open channel for use.

After you finish using the open channel, you must close it to avoid
difficulties later on.

close(rx,'ichan')

Or to close all open channels, you could use

close(rx,'all')

See Also disable, open

7-38

configure

Purpose Define size and number of RTDX channel buffers

Syntax configure(rx,length,num)

Description configure(rx,length,num) sets the size of each main (host) buffer,
and the number of buffers associated with rx. Input argument length
is the size in bytes of each channel buffer and num is the number of
channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined
by the largest message. On 16-bit processors, the main buffer must be
four bytes larger than the largest message. On 32-bit processors, set
the buffer to be eight bytes larger that the largest message. By default,
configure creates four, 1024-byte buffers. Independent of the value of
num, CCS IDE allocates one buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Examples Create a default link to CCS and configure six main buffers of 4096
bytes each for the link.

cc=ticcs % Create the CCS link with default values.

TICCS Object:

API version : 1.0

Processor type : C67

Processor name : CPU

Running? : No

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

rx=cc.rtdx % Create an alias to the rtdx portion.

RTDX channels : 0

7-39

configure

configure(rx,4096,6) % Use the alias rx to configure the length

% and number of buffers.

After you configure the buffers, use the RTDX tools in CCS IDE to
verify the buffers.

See Also readmat, readmsg, write, writemsg

7-40

convert

Purpose Change object represent property from one data type to another

Syntax convert(objname,datatype)
convert(objname,datatype,size)

Description convert(objname,datatype) returns objname with the represent
property changed to the data type specified by datatype. Input
argument datatype can be any supported data type. After you change
the data type specified in represent, read or write operations apply
the appropriate data conversion to implement on the processor the data
type specified by the represent property.

Note pointer and rpointer objects respond differently when you use
convert. Refer to “Using convert with pointer and rpointer Objects”
on page 7-43 for more information about the supported data types for
pointer or rpointer objects and how convert behaves with different
data types.

The following data types work as input arguments to convert.

datatype String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'unsigned'

'uint8' 'unsigned'

'long double' 'float'

7-41

convert

datatype String represent Property Value

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'/'unsigned'

'unsigned long' 'signed'

'unsigned int' 'unsigned'

'unsigned char' 'unsigned'

'Q0.15' 'fract'

'Q0.31' 'fract'

Various Texas Instruments processors restrict the sizes of the data types
used by objects in Embedded IDE Link CC. Shown in the next table, the
processor families restrict the valid word sizes for the listed data types.

Word Size Limits for Supported Processors

represent
Property
Value

C2000
Processors

C54x
Processors

C55x
Processors

C6000
Processors

'float' 32 bits 32 bits 32 bits 32, 64 bits
'signed’ 16, 32 bits 16, 32 bits 16, 32, 40, 64

bits
8, 16, 32, 40, 64
bits

'unsigned' 16, 32 bits 16, 32 bits 16, 32, 40, 64
bits

8, 16, 32, 40, 64
bits

'fract' 16, 32bits 16, 32 bits 16, 32 16, 32 bits

Using the properties of the objects, you change the word size by
changing the value of the storageunitspervalue property of the object.
Note that you cannot change the bitsperstorageunit property value,

7-42

convert

which depends on the processor and whether the object represents a
memory location or a register.

Pointer objects, both data and numeric, usually use fewer than 32 bits,
such as 22 or 23 bits, but are incorporated in 32-bit words.

convert applies to any object that has the represent property.
function, ticcs, and rtdx objects do not use the represent property
and do not support convert.

convert(objname,datatype,size) returns objname with the specified
data type for the represent property, and the size property value set
to size.

Using convert with pointer and rpointer Objects

Note convert does not support pointers to void, that is, pointers of the
form void *. Before you convert a pointer to void, change the pointer
to a valid data type, such as int * or char *.

When you convert a pointer object, the results depend on the data type
you specify to convert to in the syntax:

• When you specify a valid pointer type for your converted pointer or
rpointer object, convert changes the data type of the pointer and it
remains a pointer.

• When you specify a nonpointer data type for your converted object,
convert changes the referent or regstring properties of your
pointer object, changing the data type of the referent (the value the
pointer refers to) and your object is no longer a pointer. Therefore,
use convert to change pointer or rpointer objects to nonpointer
objects. You can convert to any data type, such as:

- All C native data types without the asterisk that indicates this
is a pointer

- enum (enumerated)

7-43

convert

- string

- struct

Working with pointer objects and register pointer (rpointer) objects is
slightly different from using convert with numeric objects.

Examples The following examples demonstrate how convert works with three
objects—numerical objects, pointer objects, and bitfield objects. For
more examples of using the convert method, refer to the tutorial
“Tutorial — Using function Objects and Function Calls” on page C-76

.

This example converts the data type of numeric object cvar from short
to unsigned short. To run this example, refer to the Automation
Interface tutorial in Demos in the Help browser. The demo creates
the data used here.

cvar = createobj(cc,'idat') % Creates a ticcs object 'cvar'to manipulate 'idat'.

NUMERIC Object stored in memory:

Symbol name : idat

Address : [34948 0]

Data type : short

Word size : 16 bits

Address units per value : 2 au

Representation : signed

Size : [4]

Total address units : 8 au

Array ordering : row-major

Endianness : little

read(cvar) % Reads the entire embedded array into the MATLAB workspace.

ans =

-1 508 647 7000

7-44

convert

set(cvar,'size',2) % Reduce size of 'idat' to first 2 elements.

read(cvar)

ans =

-1 508

convert(cvar,'unsigned short') % Changes data type from short to unsigned short.

NUMERIC Object stored in memory:

Symbol name : idat

Address : [34948 0]

Data type : unsigned short

Word size : 16 bits

Address units per value : 2 au

Representation : signed

Size : [2]

Total address units : 4 au

Array ordering : row-major

Endianness : little

read(cvar) % Remember--the size of cvar was set to 2.

ans =

65535 508

The second example uses convert to change the data type of a pointer
object cc from struct to int.

x = createobj(cptr,'st_ptr')
POINTER Object stored in memory:

Symbol name : st_ptr

7-45

convert

Address : [2147502192 0]
Wordsize : 32 bits
Address units per value : 4 au
Representation : unsigned
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little
Pointer datatype : struct mystruct2 *

convert(x,'int **')
POINTER Object stored in memory:

Symbol name : st_ptr
Address : [2147502192 0]
Wordsize : 32 bits
Address units per value : 4 au
Representation : unsigned
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little
Pointer datatype : int * *

The third example changes the data type of a bitfield object
bit_field from signed to unsigned.

Bitfields only exist in C programs. M-code does not support bitfields.
This example presents a structure that you would create in C.

All bitfield manipulations start with a struct object because bitfields
must be members of structures. Here is the structure definition:

struct{
int b_2 : 1;
unsigned int b_22 : 22;
unsigned int b_10 : 3;

} bit_field = { 0, 689, 4};

7-46

convert

Create the struct object.

bit_field=createobj(cc,'bit_field')

Use bit_field and getmember to construct an object for the component
in the bit field.

b_2=getmember(bit_field,'b_2')

BITFIELD Object stored in memory:
Symbol name : b_2
Address : [2147501596 0]
Wordsize : 32 bits
Address units per value : 4 au
Representation : signed
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little
Length (bits) : 1
Offset (bits) : 0

convert(b_2,'unsigned')

BITFIELD Object stored in memory:
Symbol name : b_2
Address : [2147501596 0]
Wordsize : 32 bits
Address units per value : 4 au
Representation : unsigned
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little
Length (bits) : 1
Offset (bits) : 0

7-47

convert

See Also castcopy

7-48

copy

Purpose Copy object

Syntax objname2 = copy(objname)

Description objname2 = copy(objname) returns objname2, which is a copy of the
input object specified by objname. All objects in Embedded IDE Link
CC support the copy function. Note that objname2 is independent of
the original; it is not an alias to the original objname. When you change
a property of objname2, you are not changing the same property in
objname.

See Also createobj

7-49

createobj

Purpose Create MATLAB software objects representing embedded data or
functions in program on processor

Note createobj produces a warning and will be removed in a future
version.

Syntax objname = createobj(cc,'symbolname');
objname = createobj(cc,'symbolname','option');
objname = createobj(cc,'functionname','function','funcdecl',...
'function_declaration_string);
objname = createobj(cc,functionname,'function','allocate',...
{'input',value1,'input2',value2,...});

Description objname = createobj(cc,'symbolname') makes an object in your
MATLAB workspace named objname. Your new object contains
information about the program symbol defined by symbolname. To
use createobj successfully, you must have loaded a .out file to your
processor in CCS, and the symbol must be in the current symbol table
in CCS.

symbolname can be any variable name or function name. By default,
the embedded variable object returned accesses a variable within the
current program scope.

Depending on the variable type and the storage used (register, memory,
structure, function) for the variable, createobj generates an object that
is one of the following kinds of objects:

• Memory object — access any symbol that resides in DSP memory

• Register object — access any symbols that reside in DSP registers

• Structure object — container class that accesses any symbol stored
as a C struct type or C union type

• Function object — access any callable C function or assembly function
that has a C prototype

7-50

createobj

Memory Objects

You do not create memory objects directly. Rather, you use createobj to
make objects that are derived classes of memory objects:

• Numeric class objects — objects that access primitive data type
variables, such as floats, ints, and shorts.

Numeric class objects also have derived classes:

- Pointer class objects — objects that access pointer data types
(unsigned integers)

- Enum class objects — objects that access enumerated data types
(integers)

- String class objects — objects that access string data types
(characters)

• Bitfield class objects — objects that access bitfield data types

Register Objects

Like memory objects, you cannot instantiate a register object directly.
Using createobj, you create a derived class object that accesses
variables stored in registers on the processor.

• Rnumeric class objects — objects that access primitive data type
variables, such as floats, ints, and shorts

Rnumeric class objects have derived classes just like numeric objects:

- Rpointer class objects — objects that access pointer data types
(unsigned integers)

- Renum class objects — objects that access enumerated data types
(integers)

- Rstring class objects — objects that access string data types
(characters)

It should be clear that register objects differ from memory objects only
in the kind of data storage they access — registers versus memory

7-51

createobj

locations. Otherwise, many of the properties and methods of the two
object classes are the same.

Structure Objects

Acting as a container class, structure objects hold either memory
objects or register objects, as defined in the descriptions of both objects.
Unlike memory or register objects, you create structure objects
directly when you use createobj to access a C struct or C union data
type variable.

Function Objects

When you create an object that accesses a C function in your program,
createobj returns a function object, whose properties and methods
provide information about and the ability to manipulate the processor
function. Your processor can be any function in your code, whether a
library function, a subprogram in your code, or a function you create
from the MATLAB command line.

Note When you use the function call capability with any C28x
processor, you must disable the watchdog timer or the function call
process does not work.

To create objects for local variables, the program counter (PC) must be
located within the function that contains the local variable of interest.
Note also the static variables for which you are creating objects must be
within the current scope as well.

To increase the accuracy of the information about global symbols in
your project, use run, as shown here, to position the PC to the start of
main in your application in CCS.

run(cc,'main')

Note that symbolname can be the name of a function in your processor
code. Thus, symbolname can refer to data or a function present on the
processor.

7-52

createobj

symbolname can be either a static variable or a global variable.

objname = createobj(cc,'symbolname','option') lets you declare
more information about symbolname, such as whether it represents a
static or global variable. Use one of the following strings to declare the
type for symbolname in option:

• static — declares that symbolname refers to a static variable in
your code.

• local— declares the symbol to be a local variable in your code.

• global — declares that symbolname refers to a global variable in
your code.

• function — declares that symbolname refers to a function in your
code. Refer to the next syntax for more information about this
optional keyword.

objname = createobj(cc,'functionname','function','funcdecl',...
'function_declaration_string) creates a function object objname
that accesses the function defined by function_declaration_string.
Use the optional keywords function and funcdecl to specify that you
are creating a function object, and the declaration string follows. This
syntax is required to create function objects that access library
functions, unless you use declare with an existing function object to
provide the function declaration to MATLAB software.

Function Object Details

Working with function objects is more complicated than working with
the other object classes. A number of limitations and considerations
apply when you create objects that access functions in your project.

createobj works without modification for the following kinds of
functions:

• Functions you write in C.

7-53

createobj

• Functions you write in assembly but for which you provide C
prototypes. One example of this kind is library functions that you call
from your C programs in your project.

Using createobj to construct an object that accesses a function of
the kind listed causes MATLAB software to search for the function
declaration string in your project. When MATLAB software finds the
prototype, it uses the declaration to create the information it needs to
be able to run the function from MATLAB software, including

• Objects that access the input parameters for the function

• Objects that access the output parameter for the function

• Storage locations and addresses for the function

If MATLAB software does not find the function, it creates the function
object without the information it needs to run the function, and returns
an error.

To respond to the error and provide MATLAB software the information
it needs, use declare to provide the declaration string to MATLAB
software.

You cannot create function objects for these kinds of functions:

• Assembly functions that do not have C prototypes

• Functions where the number of input arguments changes

• Functions that include non-ANSI C code

When you create a function object to access one of the above
unsupported kinds, MATLAB software returns an error that it could
not find the function declaration.

Allocating Memory For Function Objects

To allocate memory buffers for function objects that you create, use

objname = createobj(cc,functionname,'function','allocate',...

7-54

createobj

{'input',value1,'input2',value2,...});

which lets you set aside memory for each function input, called input1,
input2, and so on in the syntax. createobj assigns value1 and value2
to input1 and input2. allocate used here as a keyword specifies
that this createobj syntax should perform memory allocation. So,
to create memory buffers and assign values (12, 8, and 15) to three
input variables for a function named filter, use the following syntax
for createobj:

objname = createobj(cc,'filter','function','allocate',...

{'input1',12,'input2',8,'input3',15});

Using Library Functions

Library functions present a special case of functions for Embedded IDE
Link CC. createobj cannot find function declaration strings for library
functions that you use in your project. While createobj does create
the function object, it does not populate the function object with
the information that enables MATLAB software to run the processor
function. For library functions you must use declare to define explicitly
the function declaration for objects that access library functions. Or,
when you create the function object, use the syntax

objname = createobj(cc,'functionname','function','funcdecl',...

'function_declaration_string');

that passes the declaration string to MATLAB software at creation time.

Examples The following examples cover many situations you may encounter when
you create function objects:

• Run a C function.

• Run a library function.

• Run a function that includes a custom data type.

• Run code generated by the Real-Time Workshop software.

7-55

createobj

• Run a function that uses input vectors.

Unless you have project code that supports the functions used here you
cannot run these examples. They are for inspection only.

These examples refer to four functions — sin_taylor, dotprod,
adotprod, and cdotprod. Here is the code for sin_taylor.

/*--*

* Taylor Series expansion of sin function - Fixed Point

* Limitations: input range: -pi <x <pi;

*

* Input Datatype is:

* Q2.13 (or MATLAB sfix16_En13), scale factor = 2^13

* Output Datatype is:

* Q1.14 (or MATLAB sfix16_En14), scale factor = 2^14

*

* Taylor Expansion of sin function (first 4 terms)

* sin(x) =(approx) x[1 - (x^2/6)*[1 + (x^2/20)*[1 - (x^2/42)]]]

---/

#define SFIX32_EN26_VAL_1 67108864 // Integer equivalent of

1.0 in Q5.26

#define SFIX32_EN28_VAL_1 268435456 // Integer equivalent of

1.0 in Q3.28

#define SFIX32_EN30_VAL_1 1073741824 // Integer equivalent of

1.0 in Q1.30

short sin_taylor(short x)

{

// Define 16/32 bit local variables depending on processor

#if INT_MAX == 0x7FFFFFFF

int acc,a1,a2,a3,xpow;

#elif LONG_MAX == 0x7FFFFFFF

long acc,a1,a2,a3,xpow;

#endif

7-56

createobj

xpow = x*x; // x^2 sfix32_En26

a1 = xpow/42; // x^2/42 sfix32_En26

a2 = xpow/20; // x^2/20 sfix32_En26

a3 = xpow/6; // x^2/6 sfix32_En26

acc = SFIX32_EN26_VAL_1 - a1;

acc >>= 11;

acc *= (a2>>11);

acc = SFIX32_EN30_VAL_1 - acc;

acc >>= 14;

acc *= (a3>>14);

acc = SFIX32_EN28_VAL_1 - acc;

acc >>= 11;

acc *= x;

return (acc>>16);

}

Run a Standard ANSI C Function

In this example, we run function sin_taylor that computes the value
for the sine of an input value. This function accepts one input, x (using
data type short), and returns a short.

To get the correct values, the input data must be converted to Q16.13
format before passing to the function. After execution, the output value
must be converted from Q16.14 to decimal representation.

Create a ticcs object that refers to the IDE:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding.

7-57

createobj

Run to start of main to ensure that your global variables are initialized:

run(cc,'main',1000);

Create a function object for sin_taylor:

ff = createobj(cc,'sin_taylor')
inputdata = 0.5; % Input value to be used.

Set value of input x:

x_obj = getinput(ff,'x');
write(x_obj,inputdata* 2^13);

Run the function:

outputdata = run(ff);

Run a Library Function

For a library function, you pass the declaration string explicitly through
declare.

This example runs the function dotprod that computes the dot product
of two arrays. This function requires three inputs:

• x — a pointer to a vector of shorts

• y — a pointer to a vector of shorts

• n — the size of x and y vectors

We use the global variables a for input x, b for input y, and 4 for input
nx (because a and b are four-element vectors). The function returns a
short.

Create a ticcs object:

cc = ticcs;

reset(cc);

7-58

createobj

pause(1); % Wait for hardware reset to complete before proceeding.

Run to start of main to ensure that you initialize the global variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'.
b_addr = address(cc,'b'); % Global buffer for 'y'.

Create the function object for the library function dotprod:

ff = createobj(cc,'dotprod')

The previous step yields an incomplete function object ff because
library functions always require that you provide the function
declaration explicitly, as follows:

declare(ff,'decl','int dotprod (short *x, short *y, int nx)')

Set the value for the input parameter x:

x_obj = getinput(ff,'x');

write(x_obj,a_addr(1));

xRef_obj = deref(x_obj);

reshape(xRef_obj,4);

x_inputval = read(xRef_obj) % Verify 'y' referent value.

Set the value for y, the second input parameter:

y_obj = getinput(ff,'y');
write(y_obj,b_addr(1));
yRef_obj = deref(y_obj);
reshape(yRef_obj,4);
y_inputval = read(yRef_obj) % Verify 'y' referent value.

Pass the value for nx to the function:

nx_obj = getinput(ff,'nx');
write(nx_obj,4);

7-59

createobj

nx_inputval = read(nx_obj) % Verify 'nx' value.

Now run the function:

run(ff);

Run a Function That Has a Typedef in the Prototype

Having custom data types in your function declaration can cause
problems when you run the functions from the ANSI C desktop.

Case 1 — Running a Function That Has a Typedef in the
Function Prototype

This example runs the function cdotprod that computes the dot product
of two matrices. This function requires three inputs:

• x — a pointer to a vector of shorts

• y — a pointer to a vector of shorts

• n — the size of x and y vectors

Both n and the return argument are defined as data type INT, a custom
data type defined in the source code.

We use the global variables a for input x, b for input y, and 4 for input
n (because a and b are four-element vectors). The function returns a
short.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding.

Run to start of main to ensure that CCS initializes all of the global
variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for x.

7-60

createobj

b_addr = address(cc,'b'); % Global buffer for y.

Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

The previous call to createobj yields an incomplete function object
because the function declaration includes an unresolved typedef — the
type INT. To resolve this error, add the custom data type INT to the
type object and use declare to pass the function declaration to ANSI
C software:

add(cc.type,'INT','int'); % A warning mentions that data type

% INT cannot be resolved.

declare(ff,'decl','INT cdotprod (short x[], short y[], INT n)')

Set values for the inputs x, y, and n, and run the function, passing the
input values in the run syntax. Input x is a pointer so pass an address.
Input y is a pointer as well, so pass another address. Input n is an
integer that specifies the size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 2 — A Second Approach to Solving the Typedef Problem

We are going to run the function cdotprod, which computes the dot
product of two matrices. This function accepts three inputs:

• x — a pointer to a vector of shorts

• y — a pointer to a vector of shorts

• n — the size of x and y vectors

We use the global variable a for input x, b for input y, and 4 for input
n (because a and b are four-element vectors). The function returns a
short.

Create ticcs object:

7-61

createobj

cc = ticcs;

reset(cc);

Pause(1); % Wait for hardware reset to complete before proceeding.

Run to start of main to ensure that CCS initializes all of the global
variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'.
b_addr = address(cc,'b'); % Global buffer for 'y'.

Create function object for library function cdotprod:

ff = createobj(cc,'cdotprod')

Again createobj generates an incomplete function object because of
the unresolved data type INT in the function declaration. In this case,
fix the problem by adding the custom data type INT to the type object
and create the object ff again, instead of using declare to pass the
function declaration to ANSI C software:

add(cc.type,'INT','int'); % Warning mentioned that data type

% INT cannot be resolved.

ff = createobj(cc,'cdotprod')

Set values for the inputs x, y, and n, and run the function, passing the
input values in the run syntax. Input x is a pointer so pass an address.
Input y is a pointer as well, so pass another address. Input n is an
integer that specifies the size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 3 — A Third Approach to Solving the Typedef Problem

Once more we are going to run the function cdotprod, which computes
the dot product of two matrices. This function accepts three inputs:

• x — a pointer to a vector of shorts

7-62

createobj

• y — a pointer to a vector of shorts

• n — the size of x and y vectors

We use the global variable a for input x, b for input y, and 4 for input n
(because a and b are four-element vectors). cdotprod returns a short.

Create ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding.

Run to start of main to ensure that CCS initializes all of the global
variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for x.
b_addr = address(cc,'b'); % Global buffer for y.

Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

This attempt to create a new function object ff results in an incomplete
function object because ANSI C software could not resolve the data
type INT in the function declaration. In this approach to overcoming the
unresolved type error, use declare to pass to ANSI C software a version
of the cdotprod function declaration that does not include the offending
type INT— you do not need to add the typedef to the type object:

declare(ff,'decl','int cdotprod (short x[], short y[], short n)')

Notice that the data types for the return argument and for n now specify
int, Set values for the inputs x, y, and n, and run the function, passing
the input values in the run syntax. Input x is a pointer so pass an
address. Input y is a pointer as well, so pass another address. Input n
is an integer that specifies the size of x and y:

7-63

createobj

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Run a Function Generated by Real-Time Workshop Software

We are going to run the function ’mwdsp_fir_df_dd’ which applies
a filter to a noisy input signal. This function accepts nine input
parameters and returns the filtered signal in the input argument y.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding.

Now run the generated code from the beginning to MdlOutputs. You
run from program start until MdlOutputs to ensure that all of the code
configuration processes get done:

run(cc,'runtofunc',MdlOutputs);

After running to MdlOutputs, you create the function object — pass
the function declaration to avoid MATLAB software returning an error
when you create the function object. Due to the complexity of this
function declaration, we have assigned the string to a variable decl.
We use the variable in the createobj syntax.

decl = ['MWDSP_IDECL void MWDSP_FIR_DF_DD(const real_T *u,...

real_T *y, real_T * const mem_base,int_T *mem_offset,...

const int_T numDelays, const int_T sampsPerChan,...

const int_T numChans, const real_T * const b,...

const boolean_T one_fpf)'];

ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Examine the function declaration above. This declaration causes
MATLAB software to fail to create the fully populated function
object ff because of the MWDSP_IDECL macro at the beginning of the
string. MATLAB software cannot recognize this string. Because the

7-64

createobj

information in MWDSP_IDECL is not relevant to creating the function
object, you can remove this from the declaration string:

decl = ['void MWDSP_FIR_DF_DD(const real_T *u,...

real_T *y, real_T * const mem_base,int_T *mem_offset,...

const int_T numDelays, const int_T sampsPerChan,...

const int_T numChans, const real_T * const b,...

const boolean_T one_fpf)'];

ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Now function object ff has all the information MATLAB software needs.

Note You may not always be able to remove offending entries in a
declaration string, as we did with the macro MWDSP_IDECL. Often you
can try your declaration and see if it works. If not, use add to include
typedefs in the type object when MATLAB software complains about a
data type, or try removing the problem portion of the declaration string
if the function does not require the troublesome text.

With the function object in your MATLAB workspace, create objects for
the inputs to MWDSP_FIR_DF_DD:

Create an object for rtB:

rtBobj = createobj(cc,'rtB');

Get the relevant rtB member objects:

SumObj = getmember(rtBobj,'Sum');
% Store Output of MWDSP_FIR_DF_DD in FilObj.
FilObj = getmember(rtBobj,'Digital_Lowpass_Fil');

Next, create an object for rtDWork:

rtDWorkObj = createobj(cc,'rtDWork');

7-65

createobj

and get the relevant member objects:

Fil_FILT_STATES = getmember(rtDWorkObj,...
'Digital_Lowpass_Fil_FILT_STATES');
DF_INDX = getmember(rtDWorkObj,...
'Digital_Lowpass_Fil_FILT_STATES');

Create one last object for filterCoeffs:

filterCoeffsObj = createobj(cc,'filterCoeffs');

To run the function, you need to provide the input values:

u = SumObj.address(1); % Input 1.
y = FilObj.address(1); % Input 2.
mem_base = Fil_FILT_STATES.address(1); % Input 3.
mem_offset = DF_INDX.address(1); % Input 4.
numDelays = 65; % Input 5.
sampsPerChan = 256; % Input 6.
numChans = 1; % Input 7.
b = filterCoeffsObj.address(1); % Input 8.
one_fpf = 1; % Input 9.

Run the function, providing the input argument values in input
value/input name pairs, such as 3,membase and 6,sampPerChan:

run(ff,1,u,2,y,3,mem_base,4,mem_offset,5,numDelays,6,...
sampsPerChan,7,numChans,8,b,9,one_fpf)

Run a Function That Has Vector Inputs

This example shows how to run a function that accepts vector inputs.

We are going to run the function adotprod that computes the dot
product of two matrices. adotprod accepts two inputs,

• x — a four-element vector of shorts

• y — a four-element vector of shorts

7-66

createobj

The compiler converts the vector inputs into pointers to the vectors. We
use the global variable a for input x and b for input y. The function
returns a short.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding.

Run to start of main to ensure that CCS initializes all of the global
variables:

run(cc,'main',1000);
a_addr = address(cc,'a'); % Global buffer for 'x'.
b_addr = address(cc,'b'); % Global buffer for 'y'.

Create a function object ff to access adotprod:

ff = createobj(cc,'adotprod')

The function prototype for adotprod is

int adotprod(short x[4], short y[4])

adotprod requires as input two vector arrays x and y. The compiler
requires that you pass the addresses of x[4] and y[4], not the actual
vectors x and y. So instead of writing a data vector to input object x_obj
and y_obj, you provide the addresses of existing four-element vectors:

display('INPUT VALUE ''x'':')

x_obj = getinput(ff,'x') % This is a pointer to a vector

% of shorts.

display('INPUT VALUE ''y'':')

y_obj = getinput(ff,'y') % This is a pointer to a vector

% of shorts.

7-67

createobj

Set value of inputs x and y and run the function. Pass addresses to
x and y because both are pointers to other data:

write(x_obj,a_addr(1))
write(y_obj,b_addr(1))
x_inputval = read(reshape(deref(x_obj),4));
y_inputval = read(reshape(deref(y_obj),4));

Using the following commands to write data to x and y does not give
you the expected result — the compiler cannot determine where to put
array [1:4]:

write(x_obj,[1:4]);
write(y_obj,[1:4]);

Now run your function:

run(ff);

The preceding examples present a few of the wide variety of functions
and conditions you may encounter when you construct function objects.

See Also copy, ticcs, declare

7-68

datatypemanager

Purpose Open Data Type Manager

Syntax datatypemanager(cc)
cc2 = datatypemanager(cc)

Description datatypemanager(cc) opens the Data Type Manager (DTM) with data
type information about the project to which cc refers. With the type
manager open, you can add type definitions (typedefs) from your project
to MATLAB software so it can interpret them. You add your typedefs
because MATLAB software cannot determine or understand typedefs in
your function prototypes remotely across the interface to CCS.

Each custom type definition in your prototype must appear on the
Typedef name (Equivalent data type) list before you can use the
typedef from MATLAB software with a function object.

When the DTM opens, a variety of information and options displays in
the Data Type Manager dialog box:

• Typedef name (Equivalent data type)— provides a list of default
data types. When you create a typedef, it appears added to this list.

• Add typedef— opens the Add Typedef dialog box so you can add
one or more typedefs to your project. Your added typedef appears on
the Typedef name (Equivalent data type) list. Also, when you
pass the cc object to the DTM, and then add a typedef, the command

cc.type

returns a list of the data types in the object including the typedefs
you added.

• Remove typedef — removes a selected typedef from the Typedef
name (Equivalent data type) list.

• Load session— loads a previously saved session so you can use the
typedefs you defined earlier without reentering them.

• Refresh list — updates the list in Typedef name (Equivalent
data type). Refreshing the list ensures the contents are current. If

7-69

datatypemanager

you changed your project data type content or loaded a new project,
this updates the type definitions in the DTM.

• Close — closes the DTM and prompts you to save the session
information. This is the only way to save your work in this dialog
box. Saving the session creates an M-file you can reload into the
DTM later.

Clicking Close in the DTM prompts you to save your session. Saving
the session creates an M-file that contains operations that create your
final list of data types, identical to the data types in the Typedef
name list.

In the stored M-file, you find a function that includes the add and
remove operations you used to create the list of data types in the
DTM. For each time you added a typedef in the DTM, the M-file
contains an add command that adds the new type definition to the
cc.type property of the object. When you remove a data type, you
see an equivalent clear command that removes a data type from
the cc.type object.

Note All of your operations that add and remove data types in the
DTM during a session are stored in the generated M-file that you
save. Saving the operations has the effect of storing any mistakes you
make while creating or removing type definitions. One consequence
of storing mistakes is that when you load your saved session into the
DTM, you see the same error messages you saw when you created
the data types in the session.

The first line of the M-file is a function definition, where the name of
the function is the filename of the session you saved.

cc2 = datatypemanager(cc) returns the cc2 ticcs object while it opens
the DTM. cc2 represents an alias to cc. Objects cc and cc2 are not
independent objects. When you change a property of either cc or cc2,
the corresponding property in the other object changes as well.

7-70

datatypemanager

Data Type Manager

When you create objects that access functions in a project, MATLAB
software can recognize most data types that you use in your project.
However, if the functions use one or more custom type definitions,
MATLAB software cannot recognize the data type and cannot work
with the function. To overcome this problem, the Data Type Manager
provides the capability to define your typedefs to MATLAB software.

Entering

datatypemanager(cc)

at the MATLAB prompt opens the DTM.

7-71

datatypemanager

Before you add a type definition, the Typedef name (Equivalent data
type) list shows a number of data types already defined:

• Void(void)— void return argument for a function

• Float(float)— float data type used in a function input or return
argument

• Double(double) — double data type used in a function input or
return argument

• Long(long) — long data type used in a function input or return
argument

• Int(int) — int data type used in a function input or return
argument

• Short(short)— short data type used in a function input or return
argument

• Char(char)— character data type used in a function input or return
argument

The lowercase versions of the data types appear because MATLAB
software does not recognize the initial capital versions automatically. In
the data type entry, the project data type with the initial capital letter
is mapped to the lowercase MATLAB software data type.

Although not recommended, you can use mixed case typedef names, so
long as the equivalent data type uses lowercase. In particular, typedefs
that refer to other typedefs should resolve to a data type in lowercase.

Adding a type definition adds the new data type to the list of typedefs.

Remove any existing or new type definitions with the Remove typedef
option.

7-72

datatypemanager

Add Typedef Dialog Box

Clicking Add typedef in the DTM opens the List of Known Data
Types dialog box. As shown in this figure, you add your custom type
definitions here.

When you have used custom type definitions in your program or project,
you must specify what they mean to MATLAB software. The Typedef
option lets you enter the name of the typedef in your program and
select an equivalent type from the Known Types list. By defining
your type definitions in this dialog box, you enable MATLAB software
to understand and work with them. For example, when you return
the data to the MATLAB workspace or send data from the workspace
to your project.

After you define each typedef, the Equivalent type option shows you
the type you specified for each type definition, either when you enter it
in the Typedef field or select it from the Known Types list.

7-73

datatypemanager

Options in this dialog box let you review the data types you are using
or that are available in your projects. By selecting different data type
categories from the Known Types list, you can see all of the supported
data types.

From the list of known data types, choose one of the following data
type categories:

• MATLAB Types

Data Type Description

int8 8-bit integer data
uint8 unsigned 8-bit integer data
int16 16-bit integer data
uint16 unsigned 16-bit integer data
int32 32-bit integer data

7-74

datatypemanager

Data Type Description

uint32 unsigned 32-bit integer data
int64 64-bit integer data
uint64 unsigned 64-bit integer data
single 32-bit IEEE® floating-point data
double 64-bit IEEE floating-point data

• TI C Types

Data Type Description (For C6000 Compiler)

char 8-bit character data with a sign bit
unsigned char 8-bit character data
signed char 8-bit character data
short 16-bit numeric data
unsigned short unsigned 16-bit numeric data
signed short 16-bit numeric data with sign designation
int 32-bit integer numeric data
unsigned int 32-bit integer numerics without sign

information
signed int 32-bit integer numerics with sign

information
long 40-bit data with sign bit. Note that this is

not the same as int.
unsigned long 40-bit data without information about the

sign of the number
signed long 40-bit data without information about the

sign of the number represented
float 32-bit numeric data

7-75

datatypemanager

Data Type Description (For C6000 Compiler)

double 64-bit numeric data
long double On the C2000 and C5000 processors –

32-bit IEEE floating-point data

On the C6000 processors – 64-bit IEEE
floating-point data

Numbers of bits change depending on the processor and compiler.
For more information about Texas Instruments data types and
specific processors or compilers, refer to your compiler documentation
from Texas Instruments processors.

• TI Fixed-Point Types

Data Type Description

Q0.15 Numeric data with 16-bit word length and
15-bit fraction length

Q0.31 32-bit word length numeric data with fraction
length of 31 bits

• Struct, Union, Enum types

If the program you load on the processor includes one or more of
struct, union, or enum data types, the type definitions show up on
this list. Until you load a program on the processor, this list is empty
and trying to access the list generates an error message.

Load a program, if you have not already done so, by clicking Load
CCS Program and selecting a .out file to load on your processor.

• When the load process works, you see the name of the file you loaded
in Loaded program. Otherwise you get an error message that the
load failed.

Only programs that you load from this dialog box appear in Program
loaded. Programs that you already loaded on your processor do not

7-76

datatypemanager

appear in the Loaded program option. MATLAB software cannot
determine what program you have loaded.

• Others such as pointers and typedefs

Like struct, union, and enum data types, the Others list is empty
until you define one or more typedefs. Unlike the Struct, Union,
Enum types list, loading a program does not populate this list with
typedefs from the program. You must define them explicitly in this
dialog box.

Custom type definitions can refer to other typedefs in your project.
Nesting typedefs works after you have defined the necessary custom
types. To create a typedef that uses another typedef, define the nested
(inner) definition, and then define the outer definition as a pointer to
the nested definition. Refer to Examples to see this in operation.

Program loaded — tells you the name of the program loaded on
the processor, if you loaded the program from this dialog box. If not,
Program loaded does not report the program name.

Load CCS Program — opens the Load Program dialog box so you
can select and load a .out file to your processor.

Examples This set of examples show how to create custom type definitions with
the DTM. Each example shows the List of Known Data Types dialog
box with the selections or entries needed to create the typedef.

Start the examples by creating a ticcs object:

cc=ticcs;

Now start the DTM with the cc object. So far you have not loaded a
file on the processor.

datatypemanager(cc);

With the DTM open, you can create a few custom data types.

7-77

datatypemanager

First example

Create a typedef (typedef1) that uses a MATLAB software data type.
typedef1 uses the equivalent data type uint32.

7-78

datatypemanager

Second example

Create a second typedef (typedef2) that uses one of the TI C data
types. Define typedef2 to use the signed long data type.

7-79

datatypemanager

Third example

Create a typedef (typedef3) that refers to another typedef (typedef2).
Call this a nested typedef.

Notice that the referenced typedef, typedef2, is entered as a pointer
(indicated by the added asterisk). Using the pointer form lets MATLAB
software recognize the data type that typedef2 represents. If you do
not use the pointer, MATLAB software converts typedef3 to a default
value equivalent data type, in this case, int.

7-80

datatypemanager

The next figure shows typedef4 created to use typedef2 rather than
typedef2* for a nested typedef. Under Equivalent type, typedef4
has an equivalent data type of typedef2, as specified. But, when you
look at the list of known data types in the Data Type Manager dialog
box, you see that typedef4 maps to int, not typedef2, or eventually
signed long.

Here is the DTM after you create all the example custom data types.
Take note of typedef4 in this listing. You see typedef4 defaults to an
equivalent data type int, where typedef3, also a nested type definition,
retains the equivalent data type you assigned. Now you are ready
to use a function that includes your custom type definitions in your
hardware-in-the-loop development work.

7-81

datatypemanager

See Also createobj

7-82

declare

Purpose Define ANSI C function declaration in MATLAB environment for CCS
application

Syntax declare(objname,'filetype','filename')
declare(objname,'decl','funcdeclaration')

Description When createobj cannot construct a function object to access a function,
either because MATLAB software could not find the function declaration
for the function, or could not create the function object properties, use
declare to pass the function declaration to MATLAB software.

declare(objname,'filetype','filename') passes your function
declaration string to objname by providing the path to the file specified
in filename. To set the type of file you are providing, input argument
filetype can be one of three strings:

• filename — specifies that filename contains the path and
filename for your header file that contains the function declaration

• file — same as filename

• header — specifies that filename is the path and name of a header
file that contains the function declaration

When declare cannot find the declaration string because the specified
header file or file is not available, use the next syntax to provide the
complete declaration string explicitly.

declare(objname,'decl','funcdeclaration') passes the declaration
string in funcdeclaration to objname. To tell MATLAB software
that you are passing a declaration string, add the keyword decl,
indicating that the next argument is the function declaration string.
When you use declare to add a function declaration to objname,
declare reads the input variables and return type for the declaration
from funcdeclaration and populates the properties inputvars,
inputnames, and outputvar of objname. When declare successfully
determines the input and output variables, objname contains the
updated property values.

7-83

declare

Examples The following code passes the function declaration for cdotprod to
MATLAB software and updates the properties of ff to match the
declaration:

declare(ff,'decl','int cdotprod (short x[], short y[], short n)')

In the case of a very complex function declaration, assign the declaration
string to a variable and pass the variable in the declare syntax:

declstring=['int cdotprod (short x[], short y[], short n)']

declare(ff,'decl',declstring)

See Also execute, getinput, getoutput, resume, run

7-84

delete

Purpose Remove debug points in addresses or source files in CCS

Syntax delete(cc,addr,'type')
delete(cc,addr,'type',timeout)
delete(cc,addr)
delete(cc,filename,line,'type')
delete(cc,filename,line,'type',timeout)
delete(cc,filename,line)
delete(cc,'all')
delete(cc,'all','break',timeout)

Description delete(cc,addr,'type') removes a debug point located at the memory
address identified by addr for your processor digital signal processor.
Object cc identifies which processor has the debug point to delete.
CCS provides several types of debug points specified by type. To learn
more about the behavior of the various debugging points refer to your
CCS documentation. Options for type include the following to remove
breakpoints and probe points:

• 'break' — removes a breakpoint. This is the default.

• ' ' — same as 'break'.

• 'probe' — removes a probe point.

When you use it, delete operates in blocking mode, meaning that
after you issue the delete command, you do not regain control in
the MATLAB environment until the delete operation is completed
successfully — you are blocked from further processing. delete waits
for the period defined by either timeout or cc.timeout. If the delete
operation does not get completed within the specified time period,
delete returns an error and control.

Unlike deleting break and probe points in CCS, you cannot enter addr
as a C function name, valid C expression, or a symbol name.

When the type you specify does not match the debug point type at the
selected location, or no debug point exists, Embedded IDE Link CC

7-85

delete

returns an error reporting that it could not find the specified debugging
point.

delete(cc,addr,'type',timeout) adds the optional input parameter
timeout that determines how long Embedded IDE Link CC waits for a
response to the request to delete a breakpoint. If the response is not
received before the timeout period expires, the deletion process fails
with a timeout error. The timeout input argument is valid only when
you are deleting a breakpoint. When you omit the timeout argument,
delete uses the default value defined by cc.timeout

delete(cc,addr) is the same as the previous syntax except the
function defaults to 'break' for removing a breakpoint.

delete(cc,filename,line,'type') lets you specify the line from
which you are removing the debug point. Argument line specifies the
line number in the source file file in CCS. line, in decimal notation,
defines the line number of the debugging point to remove. To identify
the source file, argument filename contains the name of the file in
CCS, entered as a string in single quotation marks. Do not include
the path to the file. delete ignores the path information.type accepts
one of two strings — break or probe — as defined previously. When
the type of debugging point you specify with the type string does not
match the debug point type at the specified location, or no debug point
exists, Embedded IDE Link CC returns an error that it could not find
the debug point.

delete(cc,filename,line,'type',timeout)adds the optional input
parameter timeout that determines how long Embedded IDE Link
CC waits for a response to the request to delete a breakpoint. If the
response is not received before the timeout period expires, the deletion
process fails with a timeout error. The timeout input argument is valid
only when you are deleting a breakpoint. When you omit the timeout
argument, delete uses the default value defined by cc.timeout

delete(cc,filename,line) defaults to ’break’ to remove a breakpoint.

delete(cc,'all') removes all valid breakpoints in the project source
files. This does not remove probe points and it does not remove invalid
breakpoints..

7-86

delete

delete(cc,'all','break',timeout) removes all of the valid
breakpoints in the project source files. This command does not remove
probe points and it does not remove invalid breakpoints. Note that
you can use the optional input parameter timeout that determines
how long Embedded IDE Link CC waits for a response to the request
to delete all of the debug points. If the response is not received before
the timeout period expires, the deletion process fails with a timeout
error. When you omit the timeout argument, delete uses the default
value defined by cc.timeout.

See Also address, insert, run

7-87

deleteregister

Purpose Remove registers from list of saved registers in savedregs property
of function objects

Syntax deleteregister(ff,regname)
deleteregister(ff,reglist)

Description deleteregister(ff,regname) removes register regname from the list
of registers that get preserved or reverted when a function is finished
running. ff identifies the program function to which the register
applies. You can delete any register you added from the saved registers
list. You cannot delete registers that are on the default list of saved
registers — the must save registers.

When you issue the createobj call to create a handle to a function, the
compiler creates the default list of saved registers. When you execute
the function, the compiler saves the registers in the list, runs its
process, and after completing its process, restores the saved registers to
their initial state using the contents of the saved registers.

After a function generates a result, the execution process returns the
saved registers to their initial states and values. When you delete a
register you added to the saved registers list, the deleted register is not
restored or saved with other registers in the list.

For each processor family, the default list of saved registers changes,
as shown in these sections. The default lists include registers that the
compiler saves and that MATLAB software requires for Embedded IDE
Link CC to operate correctly.

Default Saved Registers for C28x Processors

AL, AH, AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7, XAR0, XAR1,
XAR2, XAR3, XAR4,XAR5, XAR6, XAR7, SP, T, TL, PL, PH, DP

Default Saved Registers for C54x Processors

AR1, AR6, AR7, and SP (required by MATLAB software, not the
compiler)

7-88

deleteregister

Default Saved Registers for C55x Processors

T0, T1, T2, T3, TRN0, TRN1, AR0, AR1, AR2, AR3, AR4, AR5, AR6,
AR7, XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7, AC0,
AC1, AC2, AC3

Default Saved Registers for C62x and C67x Processors

A0, A2, A6, A7, A8, A9. Also B0, B1, B2, B4, B5, B6, B7, B8, B9.
To support MATLAB software requirements, B15 (the stack pointer)
gets saved as well.

Registers A3, A4, A5, and B3 — your function must preserve these but
they are not needed for reading function output.

Default Saved Registers for C64x Processors

A0, A2, A6, A7, A8, A9, A16, A17, A19, A19, A20, A21, A22, A23, A24,
A25, A26, A27, A28, A29, A30, A31. Also B0, B1, B2, B4, B5, B6, B7,
B8, B9, B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27,
B28, B29, B30, B31. To support MATLAB software requirements, B15
(the stack pointer) gets saved as well.

Register B15 — not required by the compiler, but is required by
MATLAB software and is saved.

Registers A3, A4, and A5 — function must preserve these but they are
needed for reading function output.

Default Saved Registers for R1x and R2x Processors

R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14,R15

deleteregister(ff,reglist) deletes the register names in reglist
from the list of registers that get preserved when a task is finished. ff
identifies the function to which the register applies. reglist is a cell
array that contains the names of registers to remove from the saved
registers collection.

See Also addregister

7-89

deref

Purpose Object that accesses object pointed to by pointer object

Syntax objname2 = deref(objname)
objname2 = deref(objname,index)

Description objname2 = deref(objname) creates objname2, an object that accesses
the processor of objname, which is either a pointer or rpointer object.
deref does exactly what the dereferencing operator * does in C. Pointer
and rpointer objects support using function deref.

objname2 = deref(objname,index) selects one member, specified by
index, of an array of pointers. objname2 accesses only the single array
member that index specifies.

See Also createobj, read, write

7-90

dir

Purpose List files in current CCS IDE working directory

Syntax dir(cc)

Description dir(cc) lists the files and directories in the current CCS IDE working
directory. This does not reflect your MATLAB software working
directory or change the working directory.

Use cd to change your CCS IDE working directory.

See Also cd, open

7-91

disable

Purpose Disable RTDX interface, specified channel, or all RTDX channels

Syntax disable(rx,'channel')
disable(rx,'all')
disable(rx)

Description disable(rx,'channel') disables the open channel specified by the
string channel, for rx. Input argument rx represents the RTDX portion
of the associated link to CCS IDE.

disable(rx,'all') disables all the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable

On the processor side, disable depends on RTDX to disable channels
or the interface. You must meet the following requirements to use
disable:

1 The processor must be running a program.

2 You enabled the RTDX interface.

3 Your processor program polls periodically.

Examples When you have opened and used channels to communicate with a
processor, you should disable the channels and RTDX before ending
your session. Use disable to switch off open channels and disable
RTDX, as follows:

disable(cc.rtdx,'all') % Disable all open RTDX channels.
disable(cc.rtdx) % Disable RTDX interface.

See Also close, enable, open

7-92

display

Purpose Display properties of link to CCS IDE or RTDX link

Syntax display(cc)
display(rx)
display(objectname)
display(cc.type)

Description This function is similar to omitting the closing semicolon from an
expression on the command line, except that display does not
display the variable name. display provides a formatted list of the
property names and property values for a ticcs object. To return the
configuration data, display calls the function disp. To return a list of
object properties, listed by the actual property names, use get with
the object.

display(cc) returns the information about the cc object, listing the
properties and values assigned to cc.

display(rx) returns the information about the rtdx object that is part
of a cc object, listing the properties and values assigned to cc.rtdx.

display(objectname) returns the properties and property values for
objectname. This syntax supports all objects except cc, rtdx, and
cc.type.

display(cc.type) returns the properties and property values for the
cc.type object. Note that the properties associate with the cc object.

The following example illustrates the default display for a link to CCS
IDE:

cc = ticcs;

display(cc)
TICCS Object:

API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No

7-93

display

Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Using display with Multiprocessor Hardware

To support boards that contain more than one processor, display
behaves slightly differently when cc accesses multiprocessor boards.

The syntax

display(cc)

returns information about all of the members of the object. When the
processor has multiple processors, the information returned includes
the details of all of the available processors on the processor.

Examples Try this example to see the display for an RTDX link to a processor:

cc = ticcs;
rx=(cc.rtdx) % Assign the RTDX portion of cc to rx.

RTDX channels : 0

display(rx)

RTDX channels : 0

See Also get, set

7-94

enable

Purpose Enable RTDX interface, specified channel, or all RTDX channels

Syntax enable(rx,'channel')
enable(rx,'all')
enable(rx)

Description enable(rx,'channel') enables the open channel specified by the string
channel, for RTDX link rx. The input argument rx represents the
RTDX portion of the associated link to CCS IDE.

enable(rx,'all') enables all the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable

On the processor side, enable depends on RTDX to enable channels.
You must meet the following requirements to use enable:

1 The processor must be running a program when you enable the
RTDX interface. When the processor is not running, the state
defaults to disabled.

2 You must enable the RTDX interface before you enable individual
channels.

3 Channels must be open.

4 Your processor program must poll periodically.

5 Using code in the program running on the processor to enable
channels overrides the default disabled state of the channels.

Examples To use channels to RTDX, you must both open and enable the channels:

cc = ticcs; % Create a new connection to the IDE.

enable(cc.rtdx) % Enable the RTDX interface.

open(cc.rtdx,'inputchannel','w') % Open a channel for sending

% data to the processor.

7-95

enable

enable(cc.rtdx,'inputchannel') % Enable the channel so you can use

% it.

See Also disable, open

7-96

equivalent

Purpose Equivalent string or numeric value for input argument

Syntax value = equivalent(objname,input)

Description value = equivalent(objname,input) returns value as either

• The decimal numeric equivalent of input when input is a string

• The string equivalent value of input when input is a numeric

input can be a single value, a single string, an array of values or
strings, or a cell array of values or strings.

Numeric objects, string objects, rstring objects, and enum objects all
support equivalent.

The conversion process depends on the setting of the charconversion
property of the object and applies only to string and rstring objects.
Currently, the only property value allowed for charconversion is
'ASCII' indicating that strings are treated as ASCII characters and
numeric values get converted to the ASCII equivalents.

See Also cast, convert

7-97

execute

Purpose Execute function on processor through CCS

Syntax output_val = execute(ff)
output_val = execute(ff,input1,value1,...,inputn,valuen)

Description output_val = execute(ff) runs the function specified by handle ff
on your processor hardware. When you do not specify values for the
inputs to the function, execute uses the values stored in property
inputvars for the arguments. The function runs until the end of the
function, or until it reaches a breakpoint. After executing the function,
the execution process puts the return value in the assigned location in
property outputvar of ff. From MATLAB software, use read to check
the result stored in outputvar. In this form, output_val holds the
return value from executing the function.

Before you use execute to run a function, use goto to position the
program counter to the beginning of the function. execute assumes
that you have completed this step; it does not search for the function.
Execution starts from the program counter location and continues to
the end of the function or an intervening breakpoint.

output_val = execute(ff,input1,value1,...,inputn,valuen)
runs the function identified by ff, first writing the input values
assigned by the inputn/ valuen pairs to inputvars. Arguments input1,
input2,...,inputn must be strings. input1 through inputn can be either
the names of the input arguments, or the number of the input argument
in the argument list, such as 1 for the first argument, 2 for the second,
up to n for the nth argument on the list. In this form, output_val holds
the return value from executing the function. You must call goto before
using this syntax, or execute fails.

See Also run, write

7-98

flush

Purpose Flush data or messages from specified RTDX channels

Syntax flush(rx,channel,num,timeout)
flush(rx,channel,num)
flush(rx,channel,[],timeout)
flush(rx,channel)
flush(rx,'all')

Description flush(rx,channel,num,timeout) removes num oldest data messages
from the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the
channel queue, because the flush function performs a read to advance
the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel,num) removes the num oldest messages from the
RTDX channel queue in rx specified by the string channel. flush uses
the global timeout period stored in rx to determine how long to wait
for the process to complete. Compare this to the previous syntax that
specifies the timeout period. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel,[],timeout) removes all data messages from the
RTDX channel queue specified by channel in rx. To determine how long
to wait for the function to complete, flush uses timeout (in seconds)
rather than the global timeout period stored in rx. flush applies the
timeout processing when it flushes the last message in the channel
queue, because flush performs a read to advance the read pointer
past the last message. Use this calling syntax only when you specify a
channel configured for read access.

flush(rx,channel) removes all pending data messages from the
RTDX channel queue specified by channel in rx. Unlike the preceding
syntax options, you use this statement to remove messages for both
read-configured and write-configured channels.

7-99

flush

flush(rx,'all') removes all data messages from all RTDX channel
queues.

When you use flush with a write-configured RTDX channel, Embedded
IDE Link CC sends all the messages in the write queue to the processor.
For read-configured channels, flush removes one or more messages
from the queue depending on the input argument num you supply and
disposes of them.

Examples To demonstrate flush, this example writes data to the processor over
the input channel, then uses flush to remove a message from the read
queue for the output channel:

cc = ticcs;
rx = cc.rtdx;
open(rx,'ichan','w');
enable(rx,'ichan');
open(rx,'ochan','r');
enable(rx,'ochan');
indata = 1:10;
writemsg(rx,'ichan',int16(indata));
flush(rx,'ochan',1);

Now flush the remaining messages from the read channel:

flush(rx,'ochan','all');

See Also enable, open

7-100

get

Purpose Access object properties

Syntax get(cc,'propertyname')
v = get(cc,'propertyname')
get(rx,'propertyname')
get(rx)
v = get(rx)
get(objname,'propertyname')

Description get(cc,'propertyname') returns the property value associated with
propertyname for link cc.

v = get(cc,'propertyname') returns a structure v whose field names
are the link cc property names and whose values are the current values
of the corresponding properties. cc must be a link. If you do not specify
an output argument, MATLAB software displays the information on
the screen.

get(rx,'propertyname') returns the property value associated with
propertyname for link rx.

get(rx) returns all the properties and property values identified by
the link rx.

v = get(rx) returns a structure v whose field names are the link
rx property names and whose values are the current values of the
corresponding properties. rx must be a link. If you do not specify an
output argument, MATLAB software displays the information on the
screen.

get(objname,'propertyname') returns the property value associated
with propertyname for objname.

Examples After you create a connection for CCS IDE and RTDX, get provides a
way to review the properties of the connection.

cc=ticcs

TICCS object:

7-101

get

Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

RTDX channels : 0

RTDX links work slightly differently—they have more syntaxes
available. Create an alias rx to the RTDX portion of cc, then use the
alias with get:

rx=cc.rtdx

RTDX channels : 0

get(rx)

ans =

numChannels: 0
RtdxChannel: {'' [] ''}

timeout: 10

v=get(rx)

v =

numChannels: 0
RtdxChannel: {'' [] ''}

timeout: 10
v.timeout

ans =

7-102

get

10

See Also set

7-103

getinput

Purpose Specified input argument object from function object

Syntax inputobj = getinput(ff,input_name)

Description inputobj = getinput(ff,input_name) returns the input object that
accesses input_name. Enter input_name in single quotation marks
because it is a string.

Note After you execute a function, the information returned by
getinput may not be the same as the information returned before you
run the method.

This occurs because the compiler uses stack and register locations as
temporary storage and may overwrite the contents of either the stack
or registers during execution. In particular, when your function stores
the function return value in one of the input variables, the compiler
overwrites the value of the input with the output value. Refer to
“Examples” to see this in use.

Examples Use getinput to see the properties of an input object in a function
object:

sin_t=createobj(cc,'sin_taylor')

FUNCTION Object
Function name : sin_taylor
File found : hiltut.c
Start address : [12328 0]
All variables : a1, a2, a3, acc, x, xpow
Input variables : x
Return type : short

sin_t.inputvars

ans =

7-104

getinput

x: [1x1 ccs.rnumeric]

x_inobj=getinput(sin_t,'x')

NUMERIC Object stored in register(s):
Symbol name : x
Register : A4
Datatype : Unknown
Wordsize : 16 bits
Register units per value : 1 ru
Representation : signed
Bit padding (post) : 16
Size : [1]
Total register units : 1 ru
Array ordering : row-major

x_inobj

NUMERIC Object stored in register(s):
Symbol name : x
Register : A4
Datatype : Unknown
Wordsize : 16 bits
Register units per value : 1 ru
Representation : signed
Bit padding (post) : 16
Size : [1]
Total register units : 1 ru
Array ordering : row-major

Demonstrate that the information from getinput may change after
executing a function.

In your CCS project:

void fl2q15(double *x, short *r,int nx); % r is where the output

% is stored

7-105

getinput

In the MATLAB command window, here is the code that demonstrates
getinput changing.

% Create function class

cc = ccdsp;

ff = createobj(cc,'fl2q15')

% Create objects that will be used as inputs to fl2q15

input_x = createobj(cc,'input_x') % Global variable--an array of

% doubles

write(input_x,[0.1 2.5 8.0]) % Write data into input_x

input_r = createobj(cc,'input_r') % Global variable--an array of

% shorts

% Get input objects and assign values

xobj = getinput(ff,'x')

write(xobj,input_x.address)

robj = getinput(ff,'r')

write(robj,input_r.address) % Also means 'set the result to point

% to the location of input_r'

nxobj = getinput(ff,'nx')

write(nxobj,3)

% Run the function

run(ff)

% Read the result

7-106

getinput

output_err = read(deref(robj)) % Returns the wrong result

% because robj now holds a

% different value

output_correct = read(input_r))

Gives the correct result because the address of input_r did not change.

See Also getoutput

7-107

getmember

Purpose Object that accesses one structure member

Syntax objname2 = getmember(objname,membername)
objname2 = getmember(objname,index,membername)

Description objname2 = getmember(objname,membername) returns the object
objname2 that represents membername, a member of the structure that
objname accesses. membername must be a string and objname must
represent a structure in memory. Once you create objname2, it becomes
the object you use to read and write membername. Along with createobj,
these are the only functions that create objects in the product.

The class of objname2 depends on the data type of membername —
numeric structure members return numeric objects, enumerated
members return enum objects, pointers return pointer objects, and so
on:

objname2 = getmember(objname,index,membername)

Examples Suppose you have declared a structure in your source code called
testdeepstr, using code like this:

struct testdeepstr {
int x_int;
struct mystructa x_str;

struct mystructa z_str[2];
} str_recur;

Now, getmember creates objects that directly access members of
str_recur:

str_recur=createobj(cc,'str_recur')

STRUCTURE Object:

Symbol Name : str_recur

Address : [2147500816 0]

Address Units per value : 224 AU

Size : [1]

7-108

getmember

Total Address Units : 224 AU

Array ordering : row-major

Members : 'x_int', 'x_str', 'z_str'

x_str=getmember(structtest,'x_str')

STRUCTURE Object:

Symbol Name : x_str

Address : [2147500824 0]

Address Units per value : 72 AU

Size : [1]

Total Address Units : 72 AU

Array ordering : row-major

Members : 's_int', 'a_int', 's_double', 'a_char'

Even when the structure member is itself a structure, getmember
provides access directly to the nested structure, or to members within
the nested structure:

s_double=getmember(nestx_str,'s_double')

NUMERIC Object
Symbol Name : s_double
Address : [2147500872 0]
Wordsize : 64 bits
Address Units per value : 8 AU
Representation : float
Binary point position : 0
Size : [1]
Total address units : 8 AU
Array ordering : row-major
Endianness : little

Numeric object s_double is now your handle to write to or read from
member s_double:

read(s_double)

7-109

getmember

ans =

-1.4938e+059

write(s_double,2)
read(s_double)

ans =

2

See Also read, write

7-110

getoutput

Purpose Access output from function object

Syntax out_obj = getoutput(ff)

Description out_obj = getoutput(ff) returns in out_obj the object that accesses
the return from ff. The input argument ff must be a function object
constructed either by createobj or a combination of createobj and
declare. To return any value, ff must be a fully populated function
object, with all the required input and output objects.

Examples Use getoutput to see the properties of the output object in a function
object:

sin_t=createobj(cc,'sin_taylor')

FUNCTION Object
Function name : sin_taylor
File found : hiltut.c
Start address : [12328 0]
All variables : a1, a2, a3, acc, x, xpow
Input variables : x
Return type : short

getoutput(sin_t)

NUMERIC Object stored in register(s):
Symbol name :
Register : A4
Datatype : Unknown
Wordsize : 16 bits
Register units per value : 1 ru
Representation : signed
Bit padding (post) : 16
Size : [1]
Total register units : 1 ru
Array ordering : row-major

7-111

getoutput

Note that you do not need the output variable name in getoutput.
Because there can only be one output object (one output variable) you
do not need to specify which object to display.

See Also getinput

7-112

gettypeinfo

Purpose Information about existing type definition in type object

Syntax gettypeinfo(cc.type,'typename')

Description gettypeinfo(cc.type,'typename') returns all the available
information about the user-defined data type typename in the type
object cc.type.

Examples Here is what happens when you use gettypeinfo to learn about a type
in the type class:

cc.type

Defined types : Void, Float, Double, Long, Int, Short, Char,

mynewtypedef

gettypeinfo(cc.type,'Double')

ans =

type: 'double'

size: 1

uclass: 'numeric'

One important note — type names are case sensitive. double and
Double are not the same.

See Also add, clear

7-113

goto

Purpose Position program counter to specified location in project code

Note goto produces a warning and will be removed in a future version.

Syntax goto(cc,'functionname')
goto(ff)
goto(ff,'input1',value1,...,'inputn',valuen)

Description goto(cc,'functionname') opens the source file in CCS that
contains functionname and positions the cursor at the beginning of
functionname. Using goto can help you locate and work with a file that
contains a specific function without searching through all the files.

goto(ff) positions the program counter to the beginning of the function
accessed by ff. Using goto in this syntax prepares the function to be
executed but does not place any information in the registers associated
with the function. Before you use this form of goto, you can pass the
necessary values for the function input arguments into the appropriate
registers and stack locations. You can do this whether the function has
input parameters or not.

In the following sections, you see the registers and memory locations on
each processor that are affected by preparing to run the function.

C28x Family Input Argument Storage Allocation

C28x processors interpret and store input argument data in a way quite
different from the other TI processors.

The processor first checks the sizes of the function input arguments.
After determining which inputs are 32-bit, pointers, and 16-bit
arguments, the processors starts to allocate storage for the data.

Having sorted the input arguments by data size and type, the processor
starts to allocate storage by handling the 32-bit arguments. The
processor places the first 32-bit input argument (either long or float
data types) into the accumulator, registers AH and AL. Other 32-bit
input arguments, if any, get stored on the stack.

7-114

goto

Next come the pointer input arguments. The first and second pointer
input arguments go to registers XAR4 and XAR5. If the function
prototype uses more than two pointers as input arguments, the
remaining pointers go on the stack.

Finally, the processor treats the 16-bit input arguments. Where 16-bit
arguments (ints) go depends on the number and kind of other input
arguments to the function. The first four 16-bit inputs go into AH, AL,
XAR4, and XAR5, in that order, if the registers are available.

But recall that 32-bit inputs go into AL and AH, and pointers go into
XAR4 and XAR5. So, 16-bit input arguments go into any empty location
among AL, AH, XAR4, and XAR5. Remaining 16-bit arguments go on
the stack.

To make this a bit more clear, this short example uses five input
arguments to function function. Input arguments a and c are 32-bit
arguments, b is a pointer, and d and e are 16-bit arguments. For a
function like this one

void function(a,b,c,d,e)

the compiler allocates the input arguments in the order shown in the
following list:

1 a goes into register AH. It is the first 32-bit input argument.

2 c goes into register AL. It is the second 32-bit input argument.

3 b, the first pointer, goes into XAR4

4 d, the first 16-bit argument, goes into XAR5

5 e, the second 16-bit argument, goes on the stack, because AH, AL,
XAR4, and XAR5 are full.

For this example, additional input arguments, if there were any, would
go on the stack.

7-115

goto

C54x Family Input Argument Storage Allocation

Argument Register
For Long
Arguments Description

value1 A A First input
value to
function

value2 and
higher

Stack Stack All input
arguments
after the tenth
argument get
placed on the
stack

Returned
Argument

A A Returned
argument

C6000 Family Input Argument Storage Allocation

Argument Register
For Long
Arguments Description

value1 A4 A5:A4 First input value to
function

value2 B4 B5:B4 Second input value to
function

value3 A6 A7:A6 Third input value to
function

value4 B6 B7:B6 Fourth input value to
function

value5 A8 A9:A8 Fifth input value to
function

value6 B8 B9:B8 Sixth input value to
function

7-116

goto

C6000 Family Input Argument Storage Allocation (Continued)

Argument Register
For Long
Arguments Description

value7 A10 A11:A10 Seventh input value to
function

value8 B10 B11:B10 Eighth input value to
function

value9 A12 A13:A12 Ninth input value to
function

value10 B12 B13:B12 Tenth input value to
function

value11 and
higher

Stack Stack All input arguments after
the tenth argument get
placed on the stack.

Pointer to
returned
structure

A3 N/A Pointer

Return
address
register

B3 N/A Address of register

Returned
argument

A4 A5:A4 Returned argument

Data page
pointer (DP)

B14 N/A Specifies the data page.
Always 1 for the C6000
processor family.

Frame
Pointer (FP)

A15 N/A Specifies the frame
pointer location

Stack
Pointer (SP)

B15 N/A Specifies the stack pointer
location

7-117

goto

goto(ff,'input1',value1,...,'inputn',valuen) positions the PC
to the beginning of the function accessed by ff, and sets the function
input arguments input1 through inputn to the values value1 through
valuen, as provided in the goto syntax. The order of the input names
and values is not important; it does not need to match the order of
the input arguments in the function prototype or declaration. input1
through inputn can be either the names of the input arguments, or the
number of the input argument in the argument list, such as 1 for the
first argument, 2 for the second, up to n for the nth argument on the list.

Note goto must be followed by execute.

See Also delete, execute, insert, run

7-118

halt

Purpose Terminate execution of process running on processor

Syntax halt(cc,timeout)
halt(cc)

Description halt(cc,timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. To resume processing after you halt the processor, use run.
Also, the read(cc,'pc') function can determine the memory address
where the processor stopped after you use halt.

timeout defines the maximum time the routine waits for the processor
to stop. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

halt(cc) immediately stops program execution by the processor. After
the processor stops, halt returns to the host. In this syntax, the timeout
period defaults to the global timeout period specified in cc. Use get(cc)
to determine the global timeout period.

Using halt with Multiprocessor Boards

When you issue a halt from the command line, it applies to every
processor that the cc object represents. Thus halt stops every running
processor for the object.

Examples Use one of the provided demonstration programs to show how halt
works. From the CCS IDE demonstration programs, load and run
volume.out.

At the MATLAB software prompt create a link to CCS IDE

cc = ticcs

Check whether the program volume.out is running on the processor.

isrunning(cc)

7-119

halt

ans =

1

cc.isrunning % Alternate syntax for checking the run status.

ans =

1

halt(cc) % Stop the running application on the processor.

isrunning(cc)

ans =

0

Issuing the halt stopped the process on the processor. Checking in CCS
IDE shows that the process has stopped.

See Also ticcs, isrunning, run

7-120

info

Purpose Information about processor

Syntax info = info(cc)
info = info(rx)

Description info = info(cc) returns the property names and property values
associated with the processor accessed by cc. info is a structure
containing the following information elements and values:

Structure Element Data Type Description

info.procname String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with cc.

info.isbigendian Boolean Value describing the byte ordering used by the
processor. When the processor is big-endian, this
value is 1. Little-endian processors return 0.

info.family Integer Three-digit integer that identifies the processor
family, ranging from 000 to 999. For example, 320
for Texas Instruments digital signal processors.

7-121

info

Structure Element Data Type Description

info.subfamily Decimal Decimal representation of the hexadecimal
identification value that TI assigns to the processor
to identify the processor subfamily. IDs range
from 0x000 to 0x3822. Use dec2hex to convert the
value in info.subfamily to standard notation. For
example

dec2hex(info.subfamily)

produces ’67’ when the processor is a member of the
67xx processor family.

info.timeout Integer Default timeout value MATLAB software uses when
transferring data to and from CCS. All functions that
use a timeout value have an optional timeout input
argument. When you omit the optional argument,
MATLAB software uses this default value – 10s.

info = info(rx) returns info as a cell arraying containing the names
of your open RTDX channels.

Using info with multiprocessor boards

Method info works with processors that have more than one processor
by returning the information for each processor accessed by the cc
object you created with ticcs. The structure of information returned is
identical to the single processor case, for every included processor.

Examples On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

info(cc)

ans =

procname: 'CPU'
isbigendian: 0

7-122

info

family: 320
subfamily: 103

timeout: 10

This example simulates the TMS320C6211 processor running in
little-endian mode. When you use CCS Setup Utility to change the
processor from little-endian to big-endian, info shows the change.

info(cc)

ans =

procname: 'CPU'
isbigendian: 1

family: 320
subfamily: 103

timeout: 10

If you have two open channels, chan1 and chan2,

info = info(rx)

returns

info =
'chan1'
'chan2'

where info is a cell array. You can dereference the entries in info
to manipulate the channels. For example, you can close a channel by
dereferencing the channel in info in the close function syntax.

close(rx.info{1,1})

See Also ticcs, dec2hex, get, set

7-123

insert

Purpose Add debug point to source file or address in CCS

Syntax insert(cc,addr,'type')
insert(cc,addr,'type',timeout)
insert(cc,addr)
insert(cc,filename,line,'type')
insert(cc,filename,line,'type',timeout)
insert(cc,filename,line)

Description insert(cc,addr,'type') adds a debug point located at the memory
address identified by addr for your processor digital signal processor.
The link cc identifies which processor has the debug point to insert.
CCS provides several types of debug points specified by type. Options
for type include the following strings to define Breakpoints, Probe
Points, and Profile points:

• 'break' — add a breakpoint. It defines a point at which program
execution stops.

• '' — same as 'break'.

• 'probe' — add a Probe Point that updates a CCS window during
program execution. When CCS connects your probe point to a
window, the window gets updated only when the executing program
reaches the Probe Point.

• 'profile' — add a point in an executing program at which CCS
gathers statistics about events that occurred because encountering
the previous profile point, or from the start of your program.

When you use it, insert operates in blocking mode, meaning that
after you issue the insert command, you do not regain control in
the MATLAB environment until the insert breakpoint operation is
completed successfully — you are blocked from further processing.
insert waits for the period defined by either timeout or cc.timeout. If
the insert operation does not get completed within the specified time
period, insert returns an error and control.

7-124

insert

When you use the line input argument to insert a breakpoint on a
specified line, line must represent a valid line. If line does not specify
a valid line, insert returns an error and does not insert the breakpoint.

Enter addr as a hexadecimal address, not as a ANSI C function name,
valid ANSI C expression, or a symbol name.

To learn more about the behavior of the various debugging points refer
to your CCS documentation.

insert(cc,addr,'type',timeout)adds the optional input parameter
timeout that determines how long Embedded IDE Link CC waits for
a response to a request to insert a breakpoint. If the response is not
received before the timeout period expires, the insertion process fails
with a timeout error. Adding the timeout input argument is valid only
when you are inserting a breakpoint. When you omit the timeout
argument, insert uses the default value defined by cc.timeout

insert(cc,addr) is the same as the previous syntax except the type
string defaults to ’break’ for inserting a Breakpoint.

insert(cc,filename,line,'type') lets you specify the line where
you are inserting the debug point. line, in decimal notation, specifies
the line number in filename in CCS where you are adding the debug
point. To identify the source file, filename contains the name of the file
in CCS, entered as a string in single quotation marks. Do not include
the path to the file. insert ignores the file path information if you
add it to filename.type accepts one of three strings — break, probe,
or profile— as defined previously. When the line or file you specified
does not exist, Embedded IDE Link CC returns an error explaining that
it could not insert the debug point.

insert(cc,filename,line,'type',timeout)adds the optional input
parameter timeout that determines how long Embedded IDE Link CC
waits for a response to a request to insert a breakpoint. If the response
is not received before the timeout period expires, the insertion process
fails with a timeout error. Adding the timeout input argument is valid
only when you are inserting a breakpoint. When you omit the timeout

7-125

insert

insert(cc,filename,line) defaults to type 'break' to insert a
breakpoint.

Example Open a project in CCS IDE, such as volume.pjt in the tutorial folder
where you installed CCS IDE. Although you can do this from CCS IDE,
use Embedded IDE Link CC functions to open the project and activate
the appropriate source file where you add the breakpoint. Remember
to load the program file volume.out so you can access symbols and
their addresses.

cd (cc,'c:\ti\tutorial\sim62xx\volume1') % Default install;
wd=cd(cc);

wd =

c:\ti\tutorial\sim62xx\volume1

open(cc,'volume.pjt');

build(cc, 30);

Now add a breakpoint and a probe point.

insert(cc,15424,'break') % Adds a breakpoint at symbol "main"

insert(cc,'volume.c',47,'probe') % Adds a probe point on line 47

Switch to CCS IDE and open volume.c. Note the blue diamond and red
circle in the left margin of the volume.c listing. Red circles indicate
Breakpoints and blue diamonds indicate Probe Points.

Use symbol to return a structure listing the symbols and their addresses
for the current program file. symbol returns a structure that contains
all the symbols. To display all the symbols with addresses, use a loop
construct like the following:

for k=1:length(s),disp(k),disp(s(k)),end

where structure s holds the symbols and addresses.

7-126

insert

See Also address, remove, run

7-127

isenabled

Purpose Determine whether RTDX link is enabled for communications

Syntax isenabled(rx,'channel')
isenabled(rx)

Description isenabled(rx,'channel') returns ans=1 when the RTDX channel
specified by string ’channel’ is enabled for read or write communications.
When 'channel' has not been enabled, isenabled returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled,
independent of any channel. When you have not enabled RTDX you
get ans=0 back.

Important Requirements for Using isenabled

On the processor side, isenabled depends on RTDX to determine and
report the RTDX status. Therefore the you must meet the following
requirements to use isenabled.

1 The processor must be running a program when you query the RTDX
interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your processor program must be polling periodically for isenabled
to work.

Note For isenabled to return reliable results, your processor must
be running a loaded program. When the processor is not running,
isenabled returns a status that may not represent the true state of the
channels or RTDX.

Examples With a program loaded on your processor, you can determine whether
RTDX channels are ready for use. Restart your program to be sure it is

7-128

isenabled

running. The processor must be running for isenabled to work, as well
as for enabled to work. In this example, we created a link cc to begin.

cc.restart
cc.run('run');
cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

MATLAB software returns 1 indicating that your channel 'ichan' is
enabled for RTDX communications. To determine the mode for the
channel, use cc.rtdxto display the properties of object cc.rtdx.

See Also clear, disable, enable

7-129

isreadable

Purpose Determine whether MATLAB software can read specified memory block

Syntax isreadable(cc,address,'datatype',count)
isreadable(cc,address,'datatype')
isreadable(rx,'channel')

Description isreadable(cc,address,'datatype',count) returns 1 if the processor
referred to by cc can read the memory block defined by the address,
count, and datatype input arguments. When the processor cannot
read any portion of the specified memory block, isreadable returns 0.
You use the same memory block specification for this function as you
use for the read function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to be read. datatype
defines the format of data stored in the memory block. isreadable
uses the datatype string to determine the number of bytes to read per
stored value. For details about each input parameter, read the following
descriptions.

address — isreadable uses address to define the beginning of the
memory block to read. You provide values for address as either decimal
or hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset
and the memory page, entered as a vector [location, page], a string,
or a decimal value.

When the processor has only one memory page, as is true for many
digital signal processors, the page portion of the memory address is 0.
By default, ticcs sets the page to 0 at creation if you omit the page
property as an input argument. For processors that have one memory
page, setting the page value to 0 lets you specify all memory locations in
the processor using the memory location without the page value.

7-130

isreadable

Examples of Address Property Values

Property
Value Address Type Interpretation

’1F’ String Location is 31 decimal on the
page referred to by cc.page

10 Decimal Address is 10 decimal on the
page referred to by cc.page

[18,1] Vector Address location 10 decimal on
memory page 1 (cc.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. isreadable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. Note that
when you use the string option to enter the address as a hex value, you
cannot specify the memory page. For string input, the memory page
defaults to the page specified by cc.page.

count— a numeric scalar or vector that defines the number of datatype
values to test for being readable. To assure parallel structure with
read, count can be a vector to define multidimensional data blocks.
This function always tests a block of data whose size is the product of
the dimensions of the input vector.

datatype — a string that represents a MATLAB software data type.
The total memory block size is derived from the value of count and the
datatype you specify. datatype determines how many bytes to check
for each memory value. isreadable supports the following data types:

datatype
String

Number of
Bytes/Value Description

'double' Double-precision floating point
values

'int8' Signed 8-bit integers

7-131

isreadable

datatype
String

Number of
Bytes/Value Description

'int16' Signed 16-bit integers
'int32' Signed 32-bit integers
'single' Single-precision floating point

data
'uint8' Unsigned 8-bit integers
'uint16' Unsigned 16-bit integers
'uint32' Unsigned 32-bit integers

Like the iswritable, write, and read functions, isreadable checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

isreadable(cc,address,'datatype') returns 1 if the processor
referred to by cc can read the memory block defined by the address,
and datatype input arguments. When the processor cannot read any
portion of the specified memory block, isreadable returns 0. Notice
that you use the same memory block specification for this function as
you use for the read function. The data block being tested begins at the
memory location defined by address. When you omit the count option,
count defaults to one.

isreadable(rx,'channel') returns a 1 when the RTDX channel
specified by the string channel, associated with link rx, is configured
for read operation. When channel is not configured for reading,
isreadable returns 0.

Like the iswritable, read, and write functions, isreadable checks for
valid address values. Illegal address values are address spaces larger
than the available space for the processor – 232 for the C6xxx processor
family and 216 for the C5xxx series. When the function identifies an

7-132

isreadable

illegal address, it returns an error message stating that the address
values are out of range.

Note isreadable relies on the memory map option in CCS IDE.
If you did not properly define the memory map for the processor in
CCS IDE, isreadable does not produce useful results. Refer to your
Texas Instruments’ Code Composer Studio documentation for more
information about configuring memory maps.

Examples When you write scripts to run models in the MATLAB environment and
CCS IDE, the isreadable function is very useful. Use isreadable
to check that the channel from which you are reading is configured
properly.

cc = ticcs;

rx = cc.rtdx;

% Define read and write channels to the processor linked by cc.

open(rx,'ichannel','r');s

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

isreadable(rx,'ochannel')

ans=

0

isreadable(rx,'ichannel')

ans=

1

Now that your script knows that it can read from ichannel, it proceeds
to read messages as required.

See Also hex2dec, iswritable, read

7-133

isrtdxcapable

Purpose Determine whether processor supports RTDX

Syntax b=isrtdxcapable(cc)

Description b=isrtdxcapable(cc) returns b=1 when the processor referenced by
object cc supports RTDX. When the processor does not support RTDX,
isrtdxcapable returns b=0.

Using isrtdxcapable with Multiprocessor Boards

When your board contains more than one processor, isrtdxcapable
checks each processor on the processor, as defined by the cc object,
and returns the RTDX capability for each processor on the board. In
the returned variable b, you find a vector that contains the information
for each accessed processor.

Examples Create a link to your C6711 DSK. Test to see if the processor on the
board supports RTDX. It should.

cc=ticcs; %Assumes you have one board and it is the C6711 DSK.

b=isrtdxcapable(cc)

b =

1

7-134

isrunning

Purpose Determine whether processor is executing process

Syntax isrunning(cc)

Description isrunning(cc) returns 1 when the processor is executing a program.
When the processor is halted, isrunning returns 0.

Using isrunning with Multiprocessor Boards

When your board contains more than one processor, isrunning checks
each processor on the processor, as defined by the cc object, and returns
the state for each processor on the board. In the returned variable b, you
find a vector that contains the information for each accessed processor.

By providing a return variable, as shown here,

b = isrunning(cc)

b contains a vector that holds the information about the state of all
processors accessed by cc.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to be sure the
program is running before you enable RTDX channels.

cc = ticcs;

isrunning(cc)

ans =

0
% Load a program to the processor.

run(cc)
isrunning(cc)

ans =

7-135

isrunning

1

halt(cc)
isrunning(cc)

ans =

0

See Also halt, restart, run

7-136

isvisible

Purpose Determine whether CCS IDE is running

Syntax isvisible(cc)

Description isvisible(cc) determines whether CCS IDE is running on the desktop
and the window is open. If CCS IDE window is open, isvisible returns
1. Otherwise, the result is 0 indicating that CCS IDE is either not
running or is running in the background.

Examples Test to see if CCS IDE is running. Start by launching CCS IDE. Then
open MATLAB software. At the prompt, enter

cc=ticcs

TICCS Object:
API version = 1.0
Processor type = C67
Processor name = CPU
Running? = No
Board number = 0
Processor number= 0
Default timeout = 10.00 secs

RTDX Object:
Timeout: 10.00 secs
Number of open channels: 0

MATLAB software creates a link to CCS IDE and leaves CCS IDE
visible on your desktop.

isvisible(cc)

ans =

1

Now, change the visibility state to 0, or invisible, and check the state.

7-137

isvisible

visible(cc,0)
isvisible(cc)

ans =

0

Notice that CCS IDE is not visible on your desktop. Recall that
MATLAB software did not open CCS IDE. When you close MATLAB
software with CCS IDE in this invisible state, CCS IDE remains
running in the background. To close it, do one of the following.

• Open MATLAB software. Create a new link to CCS IDE. Use the
new link to make CCS IDE visible. Close CCS IDE.

• Open Microsoft Windows Task Manager. Click Processes. Find and
highlight cc_app.exe. Click End Task.

See Also info, visible

7-138

iswritable

Purpose Determine whether MATLAB software can write to specified memory
block

Syntax iswritable(cc,address,'datatype’,count)
iswritable(cc,address,'datatype')

Description iswritable(cc,address,'datatype’,count) returns 1 if MATLAB
software can write to the memory block defined by the address, count,
and datatype input arguments on the processor referred to by cc. When
the processor cannot write to any portion of the specified memory block,
iswritable returns 0. You use the same memory block specification for
this function as you use for the write function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable
uses the datatype parameter to determine the number of bytes to
write per stored value. For details about each input parameter, read
the following descriptions.

address — iswritable uses address to define the beginning of the
memory block to write to. You provide values for address as either
decimal or hexadecimal representations of a memory location in the
processor. The full address at a memory location consists of two parts:
the offset and the memory page, entered as a vector [location, page], a
string, or a decimal value. When the processor has only one memory
page, as is true for many digital signal processors, the page portion
of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

7-139

iswritable

Examples of Address Property Values

Property
Value Address Type Interpretation

1F String Location is 31 decimal on the
page referred to by cc.page

10 Decimal Address is 10 decimal on the
page referred to by cc.page

[18,1] Vector Address location 10 decimal
on memory page 1 (cc.page
= 1)

To specify the address in hexadecimal format, enter the address
property value as a string. iswritable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. Note that
when you use the string option to enter the address as a hex value, you
cannot specify the memory page. For string input, the memory page
defaults to the page specified by cc.page.

count— a numeric scalar or vector that defines the number of datatype
values to test for being writable. To assure parallel structure with
write, count can be a vector to define multidimensional data blocks.
This function always tests a block of data whose size is the total number
of elements in matrix specified by the input vector. If count is the
vector [10 10 10]

iswritable(cc,31,[10 10 10])

iswritable writes 1000 values (10*10*10) to the processor. For a
two-dimensional matrix defined with count as

iswritable(cc,31,[5 6])

iswritable writes 30 values to the processor.

7-140

iswritable

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. iswritable supports the following data types:

datatype String Description

'double' Double-precision floating point values
'int8' Signed 8-bit integers
'int16' Signed 16-bit integers
'int32' Signed 32-bit integers
'single' Single-precision floating point data
'uint8' Unsigned 8-bit integers
'uint16' Unsigned 16-bit integers
'uint32' Unsigned 32-bit integers

iswritable(cc,address,'datatype') returns 1 if the processor
referred to by cc can write to the memory block defined by the address,
and count input arguments. When the processor cannot write any
portion of the specified memory block, iswritable returns 0. Notice
that you use the same memory block specification for this function as
you use for the write function. The data block tested begins at the
memory location defined by address. When you omit the count option,
count defaults to one.

Note iswritable relies on the memory map option in CCS IDE.
If you did not properly define the memory map for the processor in
CCS IDE, this function does not produce useful results. Refer to your
Texas Instruments’ Code Composer Studio documentation for more
information on configuring memory maps.

7-141

iswritable

Like the isreadable, read, and write functions, iswritable checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

Examples When you write scripts to run models in MATLAB software and CCS
IDE, the iswritable function is very useful. Use iswritable to check
that the channel to which you are writing to is indeed configured
properly.

cc = ticcs;

rx = cc.rtdx;

% Define read and write channels to the processor linked by cc.

open(rx,'ichannel','r');

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

iswritable(rx,'ochannel')

ans=

1

iswritable(rx,'ichannel')

ans=

0

Now that your script knows that it can write to 'ichanne'l, it proceeds
to write messages as required.

See Also hex2dec, isreadable, read

7-142

list

Purpose Information listings from CCS

Syntax list(ff,varname)
infolist = list(cc,'type')
infolist = list(cc,'type',typename)

Note list(cc,type) produces a warning and type will not be
accepted in a future version.

Description list(ff,varname) lists the local variables associated with
the function accessed by function object ff. Compare to
list(cc,'variable','varname') which works the same way to return
variables from ticcs object cc.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

Some restrictions apply when you use list with function objects. list
generates an error in the following circumstances:

• When varname is not a valid input argument for the function accessed
by ff

For example, if your function declaration is

int foo(int a)

but you request information about input argument b, which is not
defined

list(ff,'b')

MATLAB software returns an error.

7-143

list

• When varname is the same as a variable assigned by MATLAB
software. Usually this happens when you use declare to pass
a function declaration to MATLAB software and the declaration
string does not match the declaration for ff as determined when
you created ff.

In an example that demonstrates this problem, the function
declaration has a name for the first input, a. In the declare call, the
declaration string does not provide a name for the first input, just
a data type, int. When you issue the declare call, MATLAB software
names the first input ML_Input1. If you try to use list to get
information about the input named ML_Input, list returns an error.
Here is the code, starting with the function declaration in your code:

int foo(int a) % Function declaration in your source code

declare(ff,'decl','int foo(int)')

% MATLAB generates a warning that it has assigned the name

% ML_Input to the first input argument

list(ff,'ML_Input') % list returns an error for this call

• When varname does not match the input name in the function
declaration provided in your source code, as compared to the
declaration string you used in a declare operation.

Assume your source code includes a function declaration for foo:

int foo(int a);

Now pass a declaration for foo to MATLAB software:

declare(ff,'decl','int foo(int b)')

MATLAB software issues a warning that the input names do not
match. When you use list on the input argument b,

list(ff,'b')

list returns an error.

7-144

list

• When varname is an input to a library function. list always fails in
this case. It does not matter whether you use declare to provide the
declaration string for the library function.

Note When you call list for a variable in a function object
list(ff,varname)the address field may contain an incorrect address
if the program counter is not within the scope of the function that
includes varname when you call list.

infolist = list(cc,type) reads information about your CCS session
and returns it in infolist. Different types of information and return
formats apply depending on the input arguments you supply to the list
function call. The type argument specifies which information listing to
return. To determine the information that list returns, use one of the
following as the type parameter string:

• project— Tell list to return information about the current project
in CCS.

• variable — Tell list to return information about one or more
embedded variables.

• globalvar — Tell list to return information about one or more
global embedded variables.

• function— Tell list to return details about one or more functions
in your project.

• type — Tell list to return information about one or more defined
data types, including struct, enum, and union. ANSI C data type
typedefs are excluded from the list of data types.

Note, the list function returns dynamic CCS information that can
be altered by the user. Returned listings represent snapshots of
the current CCS configuration only. Be aware that earlier copies of
infolist might contain stale information.

7-145

list

Also, list may report incorrect information when you make changes
to variables from MATLAB software. To report variable information,
list uses the CCS API, which only knows about variables in CCS. Your
changes from MATLAB software, such as changing the data type of a
variable, do not appear through the API and list. For example, the
following operations return incorrect or old data information from list.

Suppose your original prototype is

unsigned short tgtFunction7(signed short signedShortArray1[]);

After creating the function object fcnObj, perform a declare operation
with this string to change the declaration:

unsigned short tgtFunction7(unsigned short signedShortArray1[]);

Now try using list to return information about signedShortArray1.

list(fcnObj,'signedShortArray1')

address: [3442 1]
location: [1x66 char]

size: 1
type: 'short *'

bitsize: 16
reftype: 'short'
referent: [1x1 struct]

member_pts_to_same_struct: 0
name: 'signedShortArray1'

The type field reports the original data type short.

You get this is because list uses the CCS API to query information
about any particular variable. As far as the API is concerned, the first
input variable is a short*. Changing the declaration does not change
anything.

7-146

list

infolist = list(cc,'project') returns a vector of structures
containing project information in the format shown here when you
specify option type as project.

infolist Structure Element Description

infolist(1).name Project file name (with path).
infolist(1).type Project type — project,projlib,

or projext, refer to new
infolist(1).processortype String description of processor

CPU
infolist(1).srcfiles Vector of structures that describes

project source files. Each
structure contains the name
and path for each source file —
infolist(1).srcfiles.name

infolist(1).buildcfg Vector of structures that describe
build configurations, each with the
following entries:

• infolist(1).buildcfg.name
— the build configuration name

• infolist(1).buildcfg.outpath
— the default directory for
storing the build output.

infolist(2).... ...
infolist(n).... ...

infolist = list(cc,'variable’) returns a structure of structures
that contains information on all local variables within scope. The list
also includes information on all global variables. Note, however, that
if a local variable has the same symbol name as a global variable, list
returns the information about the local variable.

7-147

list

infolist = list(cc,'variable’,varname) returns information about
the specified variable varname.

infolist = list(cc,’variable’,varnamelist) returns information
about variables in a list specified by varnamelist. The information
returned in each structure follows the format below when you specify
option type as variable:

infolist Structure Element Description

infolist.varname(1).name Symbol name
infolist.varname(1).isglobal Indicates whether symbol is global

or local
infolist.varname(1).location Information about the location of

the symbol
infolist.varname(1).size Size per dimension
infolist.varname(1).uclass ticcs object class that matches

the type of this symbol
infolist.varname(1).bitsize Size in bits. More information is

added to the structure depending
on the symbol type.

infolist.(varname1).type data type of symbol
infolist.varname(2).... ...
infolist.varname(n).... ...

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = list(cc,'globalvar') returns a structure that contains
information on all global variables.

infolist = list(cc,'globalvar',varname) returns a structure that
contains information on the specified global variable.

infolist = list(cc,'globalvar',varnamelist) returns a structure
that contains information on global variables in the list. The

7-148

list

returned information follows the same format as the syntax
infolist = list(cc,'variable',...).

infolist = list(cc,'function') returns a structure that contains
information on all functions in the embedded program.

infolist = list(cc,'function',functionname) returns a structure
that contains information on the specified function functionname.

infolist = list(cc,'function',functionnamelist) returns a
structure that contains information on the specified functions in
functionnamelist. The returned information follows the format below
when you specify option type as function:

infolist Structure Element Description

infolist.functionname(1).name Function name
infolist.functionname(1).filename Name of file where

function is defined
infolist.functionname(1).address Relevant address

information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

infolist.functionname(1).uclass ticcs object class
that matches the
type of this symbol —
function

infolist.functionname(1).funcdecl Function declaration
— where information
such as the function
return type is
contained

infolist.functionname(1).islibfunc Is this a library
function?

7-149

list

infolist Structure Element Description

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...
infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

infolist = list(cc,'type') returns a structure that contains
information on all defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its ANSI C struct tag, enum tag
or union tag. If the ANSI C tag is not defined, it is referred to by the
CCS compiler as '$faken' where n is an assigned number.

infolist = list(cc,'type',typename) returns a structure that
contains information on the specified defined data type.

infolist = list(cc,'type',typenamelist) returns a structure that
contains information on the specified defined data types in the list.
The returned information follows the format below when you specify
option type as type:

infolist Structure Element Description

infolist.typename(1).type Type name
infolist.typename(1).size Size of this type
infolist.typename(1).uclass ticcs object class that

matches the type of
this symbol. Additional
information is added
depending on the type

7-150

list

infolist Structure Element Description

infolist.typename(2).... ...
infolist.typename(n).... ...

For the field name, list uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB software structure field name, list replaces or modifies
the name so it becomes valid.

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB software field name does not change the
name of the embedded symbol or type.

Examples This first example shows list used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, list inserts the character Q before the name.

varname1 = '_with_underscore'; % invalid fieldname
list(cc,'variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0
location: [1x62 char]

size: 1

7-151

list

uclass: 'numeric'
type: 'int'

bitsize: 16

To demonstrate using list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % name of defined C type with no tag
list(cc,'type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in CCS, you see a listing
like the following that includes structures containing details about your
project.

projectinfo=list(cc,'project')

projectinfo =

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

processortype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

See Also info

7-152

load

Purpose Transfer program file (*.out, *.obj) to processor in active project

Syntax load(cc,'filename',timeout)
load(cc,'filename')
load(cc,'gelfilename',timeout)

Description load(cc,'filename',timeout) loads the file specified by filename into
the processor. filename can include a full path to a file, or just the
name of a file that resides in the CCS working directory. Use cd to
check or modify the working directory. Only use load with program
files that are created by the CCS build process.

timeout defines the upper limit on how long MATLAB software waits
for the load process to be complete. If this period is exceeded, load
returns immediately with a timeout error.

load(cc,'filename') loads the file specified by filename into the
processor. filename can include a full path to a file, or just the name
of a file that resides in the CCS working directory. Use cd to check or
modify the working directory. Only use load with program files that
are created by the CCS build process. timeout defaults to the global
value you set when you created link cc.

Note load disables all open channels. Open channels revert to
disabled.

load(cc,'gelfilename',timeout) loads and opens the general
extension language (GEL) file named gelfilename into CCS, in the
active project. gelfilename needs to be the full path to the file, or just
the file name if the file already shows up in your CCS workspace or
project. load adds the GEL file to the active project only. To make a
different project active so you can add your GEL file to it, use activate.

The timeout option is not required, as is true for most methods in the
product. Using load to add a GEL file is identical to using the File
> Load GEL... option in CCS IDE. Your loaded GEL file appears in

7-153

load

the GEL files folder in CCS. To remove GEL files, use remove. You can
load any GEL file — you must be sure the GEL file is the correct one.
load does not attempt to verify whether the GEL file is appropriate for
your hardware or project.

Examples Taken from the CCS link tutorial, this code prepares for and loads an
object file filename.out to a processor.

projfile =...

fullfile(matlabroot,'directoryname','directoryname','filename')

projpath = fileparts(projfile)

open(cc,projfile) % Open project file

cd(cc,projpath) % Change Code Composer working directory

Now use CCS IDE to build your file. Select Project > Build from
the menu bar in CCS IDE.

With the project build complete, load your .out file by entering

load(cc,'filename.out')

See Also cd, dir, open

7-154

msgcount

Purpose Number of messages in read-enabled channel queue

Syntax msgcount(rx,'channel')

Description msgcount(rx,'channel') returns the number of unread messages in
the read-enabled queue specified by channel for the RTDX interface rx.
You cannot use msgcount on channels configured for write access.

Examples If you have created and loaded a program to the processor, you can
write data to the processor, then use msgcount to determine the number
of messages in the read queue.

1 Create and load a program to the processor.

2 Write data to the processor from MATLAB software.

indata=1:100;
writemsg(cc.rtdx,'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in
the queue.

num_of_msgs = msgcount(cc.rtdx,'ichannel')

See Also read, readmat, readmsg

7-155

new

Purpose Create and open text file, project, or build configuration in CCS IDE

Note new(cc,objectname,'text') produces a warning and 'text'
will not be accepted in a future version.

Syntax new(cc,'objectname','type')
new(cc,'objectname')

Description new(cc,'objectname','type') creates and opens an empty object of
type named objectname in the active project in CCS IDE. The new
object can be a text file, a project, or a build configuration. String
objectname specifies the name of the new object. When you create new
text files or projects, objectname can include a full path description.
When you save your new project or file, CCS IDE stores the file at the
processor of the full path.

If you do not provide a full path for your file, new stores the file in the
CCS IDE working directory when you save it. New files open as active
windows in CCS IDE; they are not placed in the active project folders
based on their file extension (compare to add).

New build configurations always become part of the active project in
CCS IDE. Because build configurations always become part of a project,
you only need to enter a name to distinguish your new configuration
from existing configurations in the project, such as Debug and Release.

To specify the text file or project to create, objectname must be the full
path name to the file, unless your file is in a directory on your MATLAB
software path, or the file is in your CCS working directory. Also, when
you create new text files or projects, you must include the file extension
in objectname.

type accepts one of the strings or entries listed in the following table.

type String Description

'text' Create a new text file in the active project.

7-156

new

type String Description

'project' Create a new project.
'projext' Create a new CCS external make project.

Using this option indicates that your project
uses and external makefile. Refer to your CCS
documentation for more information about
external projects.

'projlib' Create a new library project with the .lib file
extension. Refer to your CCS documentation for
more information about library projects.

[] Create a new project. The [] indicate that you
are creating a .pjt file.

'buildcfg' Create a new build configuration in the active
project.

Use new to create the file types listed in the following table.

File Types and Extensions Supported by new and CCS IDE

File Type to Create type String Used
Supported
Extensions

C/C++ source files 'text' .c, .cpp, .cc, .ccx,
.sa

Assembly source files 'text' .a*, .s* (excluding
.sa, refer to C/C++
source files)

Object and Library
files

'text' .o*, .lib

Linker command file 'text' .cmd

Project file 'project' .pjt

Build configuration 'buildcfg' No extension

7-157

new

Caution After you create an object in CCS IDE, save the file in CCS
IDE. new does not automatically save the file. Failing to save the file
can cause you to lose your changes when you close CCS IDE.

new(cc,'objectname') creates a project in CCS IDE, making it the
active project. When you omit the type option, new assumes you are
creating a new project and appends the .pjt extension to objectname
to create the project objectname.pjt. The .pjt extension is the only
extension new recognizes.

Examples When you need a new project, create a link to CCS IDE and use the link
to make a new project in CCS IDE.

cc=ticcs;

cc.visible(1) % Make CCS IDE visible on your desktop (optional).

new(cc,'my_new_project.pjt','project');

New files of various types result from using new to create new active
windows in CCS IDE. For instance, make a new ANSI C source file in
CCS IDE with the following command:

new(cc,'new_source.c','text');

In CCS IDE you see your new file as the active window.

See Also activate, close, save

7-158

open

Purpose Open channel to processor or load file into CCS IDE

Note open(cc,filename,'text') produces a warning and 'text'
will not be accepted in a future version.

open(cc,filename,'workspace') produces a warning and
'workspace' will not be accepted in a future version.

open(cc,filename,'program') produces a warning and will be
removed in a future version. Use load instead.

Syntax open(rx,'channel1','mode1','channel2','mode2',...)
open(rx,channel,mode)
open(cc,filename,filetype,timeout)
open(cc,filename,filetype)
open(cc,filename)

Description open(rx,'channel1','mode1','channel2','mode2',...) opens new
RTDX channels associated with the link rx. Each new channel uses
the string name channel1, channel2, and so on. For each channel,
open configures the channel according to the associated mode string.
Channel1 uses mode1; channel2 uses mode2, and so forth. Mode strings
are either:

• r— Configure the channel to read data from the processor.

• w— Configure the channel for writing data to the processor.

open(rx,channel,mode) opens a new channel to the processor
associated with the link rx. The new channel uses the channel string
and is configured for reading or writing according to the mode string.

open(cc,filename,filetype,timeout) loads filename into CCS IDE.
filename can be the full path to the file or, if the file is in the current

7-159

open

CCS IDE working directory, you can use a relative path, such as the
name of the file.

Note Program files (.out extension) and project files (.mak extension)
are loaded on the processor referenced by your ticcs object. Workspace
files are coupled to a specific processor. As a result, open loads
workspace files to the processor that was active when you created the
workspace file. This may not be the processor referred to by the object.

Use cd to determine or change the CCS IDE working directory. You
use the filetype option to override the default file extension. Four
filetype strings work in this function syntax, shown in the following
table.

filetype
String Extension Description

program .out Executable programs for the
processor

project .c, .a*, .s*, .o*, .lib,
.cmd,.mak

CCS IDE project files

text any All text files
workspace .wks CCS IDE workspace files

Note When you have one or more handles to CCS in MATLAB
software, opening a new CCS workspace from MATLAB software
or directly in CCS, causes your existing handles to become invalid.
MATLAB software returns an error when you try to connect to your new
workspace. To continue your work, clear each of your existing handles
to CCS and create new handles for the new workspace.

7-160

open

To let you determine how long MATLAB software waits for open to load
the file into CCS IDE, timeout sets the upper limit, in seconds, for the
period MATLAB software waits for the load. If MATLAB software waits
more than timeout seconds, load returns immediately with a timeout
error. Returning a timeout error does not suspend the operation; it
stops MATLAB software from waiting for confirmation for the operation
completion.

open(cc,filename,filetype) loads filename into CCS IDE. filename
can be the full path to the file or, if the file is in the current CCS IDE
working directory, you can use a relative path, such as the name of
the file. Use the cd function to determine or change your CCS IDE
working directory. You use the filetype option to override the default
file extension. Refer to the previous syntax for more information about
filetype. When you omit the timeout option in this syntax, MATLAB
software uses the global timeout set in cc.

open(cc,filename) loads filename into CCS IDE. filename can be
the full path to the file or, if the file is in the current CCS IDE working
directory, you can use a relative path, such as the name of the file. Use
the cd function to determine or change the CCS IDE working directory.
You use the filetype option to override the default file extension. Refer
to the previous syntax for more information about filetype. When
you omit the filetype and timeout options in this syntax, MATLAB
software uses the global timeout set in cc, and derives the file type from
the extension in filename. Refer to the previous syntax descriptions for
more information on the input options.

Note You must open and enable channels before you use them. You
cannot write to or read from channels that you open but do not enable.

Examples For RTDX use, open forms part of the function pair you use to open
and enable a communications channel between MATLAB software and
your processor.

cc = ticcs;

7-161

open

rx = cc.rtdx;
open(rx,'ichannel','w');
enable(rx,'ichannel');

When you are working with CCS IDE, open adopts a different
operational form based on your input arguments for filename and the
optional arguments filetype and timeout. In the CCS IDE variant,
open loads the specified file into CCS IDE. For example, to load the
tutorial program used in Getting Started with Automation Interface,
use the following syntax

cc = ticcs;
cc.load(tutorial_6xevm.out);

See Also cd, dir, load

7-162

profile

Purpose Code execution and stack usage profile report

Note The tic and raw profile report options that depend on DSP/BIOS
will be removed in a future release. Use report for all profiling.

Syntax ps=profile(cc, execution ,'format',timeout)
ps=profile(cc,'execution','format')
profile(cc,'stack','action')

Description ps=profile(cc, execution ,'format',timeout) returns execution
profile measurements from the generated code. Structure ps contains
the information in either raw form or filtered and formatted into fields.

To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Enable real-time execution profiling in the configuration parameters
and build your model.

2 Select whether to profile by task or subsystem.

3 Build your model.

4 Download your program to the processor.

5 Run the program on the processor.

6 Stop the running program.

7 Use profile at the MATLAB command prompt to access the profiling
reports.

If your project uses DSP/BIOS, the profiling system uses CLK and STS
objects to profile your project. STS objects buffer statistics data accesses
by statistics functions in the operating system. The objects are a service
provided by the DSP/BIOS real-time kernel. For details about STS

7-163

profile

objects and DSP/BIOS, refer to your Texas Instruments documentation
that came with CCS IDE.

Note Profiling works with and without enabling DSP/BIOS in your
project. To use DSP/BIOS, you must install Target Support Package
TC6.

To define how to return the profiling information, set the format input
argument.

format String Description

raw Returns an unformatted list of the timing
objects (profiling) information. Returns and
formats all time-based objects.

report Returns the same data as the raw option,
formatted into an HTML report. Works
only on projects that include DSP/BIOS.
If you own Target Support Package TC6
software, profile(cc,'report') provides
more information about code you generate from
Simulink software models.

tic Returns a formatted list of the STS timing
objects information. Filters out some of the
information returned with the raw option. To
be returned by this format, the object must
be time-based. Does not return user-defined
objects. Use raw to see user-defined objects.

Entries in the next table explain when you can use raw, report, and
tic with your projects—whether the format applies to task or atomic
subsystem profiling and whether the format applies with DSP/BIOS.

7-164

profile

format
String

Profiling by
Parameter

DSP/BIOS
Project

Non-DSP/BIOS
Project

Task No Noraw

Atomic
Subsystem

Yes No

Task No Yesreport

Atomic
Subsystem

Yes Yes

Task No Notic

Atomic
Subsystem

Yes No

The following examples show the different report formats that raw,
report, and tic provide:

• raw

cpuload: 0
error: 0

avgperiod: 1000
rate: 1000
obj: [4x1 struct]

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1564
total: 10644

avg: 367.0345
pdfactor: 0.0075

count: 29

7-165

profile

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1528
total: 3052

avg: 1526
pdfactor: 0.0075

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0.0075

count: 0

4

name: 'IDL_busyObj'
units: 'User Def'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0

count: 0

• report (without DSP/BIOS)

Sample HTML profiling report

• report (with DSP/BIOS)

Sample HTML profiling report

• tic

7-166

file://file://T:/Adoc/matlab/doc/src/toolbox/ccslink/ug/sample_task_profiling_report.html
file://file://T:/Adoc/matlab/doc/src/toolbox/ccslink/ug/sample_subsystem_profiling_report.html

profile

cpuload: 0
obj: [3x1 struct]

ps.obj(1)

ans =

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1.1489e-005
avg: 1.1474e-005

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -16.1465
avg: 0

count: 0

7-167

profile

When you choose raw, returned variable ps contains an undocumented
list of the information provided by CCS IDE. The tic option provides
the same information in ps, as a collection of fields.

Fields in ps Description

ps.cpuload Execution time in percent of total time
spent out of the idle task.

ps.obj Vector of defined STS objects in the
project.

ps.obj(n).name User-defined name for an STS object
sts(n). Value for n ranges from 1 to
the number of defined STS objects.

ps.obj(n).units Either Hi Time or Low Time. Describes
the timer applied by this STS object,
high- or low- resolution time based.

ps,obj(n).max Maximum measured profile period for
sts(n), in seconds.

ps.obj(n).avg Average measured profile period for
sts(n), in seconds.

ps.obj(n).count Number of STS measurements taken
while executing the program.

Note When you enable DSP/BIOS in your project, your CLK and STS
must be configured correctly for the profiling information to be accurate.
Use the DSP/BIOS configuration file to add and configure CLK and
STS objects for your project.

With projects that you generate that use DSP/BIOS, the report
option creates a report that contains all of the information provided
by the other options, plus additional data that comes from DSP/BIOS

7-168

profile

instrumentation in the project. You enable the DSP/BIOS report
capability with the Profile performance at atomic subsystem
boundaries option on the Target Support Package C6 pane on the
Real-Time Workshop pane of the Simulink Configuration Parameters
dialog box.

ps=profile(cc,'execution','format') defaults to the timeout period
specified in the ticcs object cc.

profile(cc,'stack','action') returns the CPU stack usage from
your application. action defines the stack use profile operation and
accepts one of the strings in the following table.

action String Description

setup Initializes the CPU stack with known
patterns. Writes 0xA5 to the stack
addresses on C6000 processors
and 0xA5A5 on C2000 and C5000
processors.

report Returns the report of the stack usage
from running your application.

The MATLAB output from profiling the system stack has the elements
described in the following table.

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name
assigned to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

7-169

profile

Report Entry Units Description

endAddress Decimal address and
page

Lists the address of the
end of the stack and
the memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for
the stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

To use profile to assess how your program uses the stack, complete
the following tasks with a Simulink model or manually written code:

1 Build your model with real-time execution profiling enabled in the
configuration parameters. Skip this step for custom code.

2 Download your program to the processor.

3 Run the program on the processor.

4 Stop the running program.

5 Use profile at the MATLAB command prompt to access the profiling
reports.

For more information about using stack profiling, refer to “System
Stack Profiling” on page 4-19.

7-170

profile

Using Profiling

The following items affect your ability to profile project execution and
stack usage:

Execution profiling works on code you generate from a Simulink
model. You cannot profile manually written code that you provide in
your project.

Stack profiling works with both model-generated code and your
custom code.

Stack profiling does not work when your project uses DSP/BIOS. You
get an error when you profile the system stack with DSP/BIOS enabled.

To use DSP/BIOS, you must install Target Support Package TC6
software.

For more information about enabling and using execution profiling,
refer to “Real-Time Execution Profiling” on page 4-11.

Examples This example presents two forms of the data returned by profile—tic
and raw. The generated code did not includeDSP/BIOS.

Running profile returns structure ps containing profiling data
gathered while your program ran. Stop the running program before
you request the profile data.

ps=profile(cc,'execution','tic')

ps =

cpuload: 0
obj: [3x1 struct]

ps.obj(1)

ans =

name: 'KNL_swi'

7-171

profile

units: 'Hi Time'
max: 1.1759e-005
avg: 2.7597e-006

count: 29

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1.1759e-005
avg: 2.7597e-006

count: 29

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1.1489e-005
avg: 1.1474e-005

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -16.1465
avg: 0

count: 0

Omitting the format option caused profile to return the data fully
formatted and slightly filtered. Adding the raw option to profile
returns the same information without filtering any of the returned data.

ps=profile(cc,'execution','raw')

ps =

7-172

profile

cpuload: 0
error: 0

avgperiod: 1000
rate: 1000
obj: [4x1 struct]

for k=1:length(ps.obj),disp(k),disp(ps.obj(k)),end;
1

name: 'KNL_swi'
units: 'Hi Time'

max: 1564
total: 10644

avg: 367.0345
pdfactor: 0.0075

count: 29

2

name: 'processing_SWI'
units: 'Hi Time'

max: 1528
total: 3052

avg: 1526
pdfactor: 0.0075

count: 2

3

name: 'TSK_idle'
units: 'Hi Time'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0.0075

count: 0

7-173

profile

4

name: 'IDL_busyObj'
units: 'User Def'

max: -2.1475e+009
total: 0

avg: 0
pdfactor: 0

count: 0

Your results can differ from this example depending on your computer
and processor. The raw-format data in this example includes one extra
timing object—IDL_busyObj. As defined in the .cdb file, this object is
not time based (Units is 'User Def'). Specifying tic does not return
the IDL_busyObj object.

The following example demonstrates setting up and profiling the system
stack. The ticcs object cc must exist in your MATLAB workspace and
your application must be loaded on your processor. This example comes
from a C6713 simulator.

profile(cc,'stack','setup') % Set up processor stack--write 0xA5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

run(cc)

halt(cc)

7-174

profile

profile(cc,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

See Also ticcs

7-175

read

Purpose Data from memory on processor or in CCS

Syntax mem = read(cc,address,'datatype',count,timeout)
mem = read(cc,address,'datatype',count)
mem = read(cc,address,'datatype')
data = read(objname,structindex)
data = read(objname,structindex,member)
data = read(objname,member)
data = read(objname,structindex,member,memberindex)
data = read(objname)
data = read(objname,index)
data = read(objname,member,memberindex,structindex)
data = read(...,timeout)

Description ticcs Object Syntaxes

mem = read(cc,address,'datatype',count,timeout) returns data
from the processor referred to by cc. The address, count, and
datatype input arguments define the memory block to be read. The
data block to read begins at the memory location defined by address.
count determines the number of values to read, starting at address.
datatype defines the format of the raw data stored in the referenced
memory block.
To check values in memory on a running processor, such as values
that change during processing, insert one or more breakpoints in the
project code and perform the read operation while the processor code
is paused at one of the breakpoints. After you read the data, release
the breakpoint.

Note Do not attempt to read data from the processor while it is running.

read uses the datatype parameter to determine the number of bytes
to read per stored value. timeout is an optional input argument you
use to specify when to terminate long read processes and data transfers.
For details about each input parameter, read the following descriptions.

7-176

read

address — read uses address to define the beginning of the memory
block to read. You provide values for address as either decimal or
hexadecimal representations of a memory location in the processor. The
full address at a memory location consists of two parts: the offset and
the memory page, entered as a vector [location, page], a string, or a
decimal value. When the processor has only one memory page, as is
true for many digital signal processors, the value of the page portion
of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

1F String Offset is 31 decimal on the page
referred to by cc.page

10 Decimal Offset is 10 decimal on the page
referred to by cc.page

[18,1] Vector Offset is 18 decimal on memory
page 1 (cc.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. read interprets the string as the hexadecimal
representation of the desired memory location. To convert the hex value
to a decimal value, the function uses hex2dec. Note that when you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults
to the page specified by cc.page.

count— a numeric scalar or vector that defines the number of datatype
values to read. Entering a scalar for count causes read to return mem
as a column vector which has count elements. count can be a vector
to define multidimensional data blocks. The elements of count define

7-177

read

the dimensions of the data matrix returned in mem. The following table
shows examples of input arguments to count and how read responds.

Input Response

n Read n values into a column vector. Return the
vector in mem.

[m,n] Read (m*n) values from memory into an m-by-n
matrix in column major order. Return the matrix
in mem.

[m,n,p,...] Read (m*n*p*...) values from the processor
memory in column major order. Return the data
in an m-by-n-by-p-by... multidimensional matrix
and return the matrix in mem.

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. read supports the following data types:

datatype String Description

'double' Double-precision floating point values
'int8' Signed 8-bit integers
'int16' Signed 16-bit integers
'int32' Signed 32-bit integers
'single' Single-precision floating point data
'uint8' Unsigned 8-bit integers
'uint16' Unsigned 16-bit integers
'uint32' Unsigned 32-bit integers

To limit the time that read spends transferring data from the processor,
the optional argument timeout tells the data transfer process to stop
after timeout seconds. timeout is defined as the number of seconds

7-178

read

allowed to complete the read operation. You might find this useful for
limiting prolonged data transfer operations. If you omit the timeout
option in the syntax, read defaults to the global timeout defined in cc.

Working With Negative Values

Writing a negative value causes the data written to be saturated
because char is unsigned on the processor. Hence, a 0 (a NULL) is
written instead. A warning results as well, as this example shows.

cc = ticcs;

ff = createobj(cc,'g_char'); % Where g_char is in the code.

write(ff,-100);

Warning: Underflow: Saturation was required to fit the data into

an addressable unit.

When you try to read the data you wrote, the character being read is
0 (NULL) — so there seems to be nothing returned by the read function.

You can demonstrate this by the following code, after writing a negative
value as shown in the previous example.

readnumeric(x)

ans =

0

read(x) % Reads the NULL character

ans = % Apparently nothing is returned.

double(read(x)) % Read the numeric equivalent of NULL.

ans = % Again, appears not to return a value.

mem = read(cc,address,'datatype',count) reads data from memory
on the processor referred to by cc and defined by the address, and
datatype input arguments. The data block being read begins at the
memory location defined by address. count determines the number of
values to be read. When you omit the timeout option, timeout defaults
to the value specified by the timeout property in cc.

7-179

read

mem = read(cc,address,'datatype') reads the memory location
defined by the address input argument from the processor memory
referred to by cc. The data block being read begins at the memory
location defined by address. When you omit the count option, count
defaults to a value of 1. This syntax reads one memory location of
datatype.

Note read does not coerce data type alignment in your processor
memory. You can write and read data of any type (datatype) to and
from any memory location (address).

Certain combinations of address and datatype are difficult for some
processors to use. To ensure seamless read operation, use the address
function to extract address values that are compatible with the
alignment required by your processor.

Like the isreadable, iswritable, and write functions, read checks
for valid address values. Illegal address values are any address space
larger than the available space for the processor — 232 for the C6xxx
processor family and 216 for the C5xxx series. When read identifies an
illegal address, it returns an error message stating that the address
values are out of range.

Reading Structures

Reading data from structures in memory represents a special subset of
general read. In each syntax, objname accesses a structure in memory
on the processor or in CCS.

data = read(objname,structindex) reads the structure element
referred to by structindex.

data = read(objname,structindex,member) returns the value of the
specified member of the structure as identified by structindex.

data = read(objname,member) returns the value of member from the
structure accessed by objname, for all indexes — the entire structure
variable.

7-180

read

data = read(objname,structindex,member,memberindex) returns
the index for member in the accessed structure.

Embedded Object Syntaxes

read works with all of the objects you create with createobj. To
transfer data from CCS to MATLAB software, use the read function —
depending on the data to access. Note that read and its variants are the
only way to get data from CCS to MATLAB as objects.

data = read(objname) reads all the data in memory at the
location accessed by object objname, and converts the data into a
numeric representation. Properties of objname, such as wordsize,
storageunitspervalue, size, represent, and binarypt, determine
how read performs the numeric conversion. data is a numeric array
whose dimensions are defined by the size property of objname. Object
property size is the dimensions vector. Each element in the dimensions
vector contains the size of the data array in that dimension. When size
is a scalar, data is a column vector of the length specified by size.

For example, when size is [2 3], data is a 2-by-3 array.

Properties of the Object

objname, the object that accesses the data, has the following properties,
if the object is a numeric object. The properties differ for different types
of objects, such as structure objects or register objects.

Property Options Description

size Greater than 1 Specifies the
dimensions of the
output numeric array.

7-181

read

Property Options Description

arrayorder col-major or
row-major

Defines how to map
sequential memory
locations into arrays.
col-major is the
default, and the
MATLAB software
standard. ANSI C uses
’row-major’ ordering
most often.

represent float, signed,
unsigned, fract

Determines the
numeric representation
used in the output data.

• float — IEEE
software floating
point representation,
either 32- or 64 bits

• signed — two’s
complement signed
integers

• unsigned —
unsigned binary
integer

• fract — fractional
fixed-point data

7-182

read

Property Options Description

wordsize Greater than 1 (Read-only) Calculated
from other object
properties such as
storageunitspervalue

binarypt 0 to wordsize Determines the position
of the binary point in
a word to specify its
interpretation

data = read(objname,index) reads the specified element in the
memory location accessed by objname. index is a scalar or a vector that
identifies the particular data element to return. When you enter [] for
index, read returns all the data stored at the memory location. When
you enter a scalar for index, read returns a column vector of length
size containing the data from the memory space. When index is a
vector, read returns the element in the array specified by the entries
in the vector. For example, if you are reading data from a 3-by-3-by-3
array, setting index to be [2 2 2] returns the element data(2,2,2).
To return more than one element, use MATLAB software standard
range notation for the vector elements in index. As an example, when
index is [1:6], read returns the first six elements of data. You must
remember that the number of elements in the vector in index must be
either one (a scalar) or the same as the number of dimensions in data
and specified by the property size. When data is a four dimensional
array, your vector in index must have four elements, one for each
array dimension. Otherwise, read cannot determine which elements to
return.

data = read(objname,member,memberindex,structindex) reads the
members of the structure that objname accesses. When you omit all of
the input arguments except objname, read returns the entire structure.
member, memberindex, and structindex (an optional input argument)
specify which structure member to read:

• member— Specifies the name of the member of the structure to read.

7-183

read

• memberindex— Provides the index of the data element to read.

• structindex — Identifies the structure to read when objname
accesses a structure containing structures or a vector.

Note that the class of the object data from the read operation depends
on the class of the member being read — numeric values return numeric
objects, string values return string objects, and so on.

data = read(...,timeout) During read operations, the timeout
property of objname determines the time allowed to complete the read.
Including a value for the timeout input argument in the read syntax
lets you override the timeout property setting for objname with the
value you enter for argument timeout. For reading large data arrays,
being able to explicitly set the timeout value as an input option may be
necessary to let read run to completion. Note that using the timeout
input option does not change the timeout property value for objname.

When you need to read one member of a structure or perform individual
read operations, consider using getmember.

Examples read reads data that you wrote to the processor.

cc = ticcs;

indata = 1:25;

write(cc,0,indata,30);

outdata=read(cc,0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

7-184

read

outdata now contains the values in indata, returned from the
processor.

As a further demonstration of read, try the following functions after you
create a link cc and load an appropriate program to your processor. To
perform the first example, var must exist in the symbol table loaded
in CCS.

• Read one 16-bit integer at the location of processor symbol var.

mlvar = read(cc,address(cc,'var'),'int16')

• Read 100 32-bit integers from address f000 (hexadecimal) and plot
the data.

mlplt = read(cc,'f000','int32',100)
plot(double(mlplt))

• Increment the integer value stored at address 10 (decimal) of the
processor.

cc = ticcs;
ainc = 10
mlinc = read(cc,ainc,'int32')
mlinc = int32(double(mlinc)+1)
cc.write(ainc,mlinc)

Reading String Variables

Using read to return a string creates a string object. Within the string
object, the property charconversion controls the read operation. When
you set charconversion to ASCII, read recognizes only the ASCII
characters from 0 to 127. ASCII is the only accepted type for the
charconversion property value.

While reading strings from memory, read continues until it encounters
a null character, then it stops.

7-185

read

For example, if memory contains the string “Hello World” in the
following format in memory (each block represents one memory location)

H e l l o W o r l d \0 M

read does not return the M because it stops at the null character \0.

To return a string from memory as a numeric object in MATLAB
software, use readnumeric.

Reading Enumerated Variables

If you read an enumerated date type from memory, the returned entry
is a string object.

Reading Structures

The following examples show various structure read syntaxes at work.
Start with a structure definition.

struct tag {
float re;
float im;

} st[2] = {1,2,3,4};

Use read to return the information stored in the structure st.

st = createobj(cc,'st')

answer = read(st)
ans =

[1x2 struct]

answer{1}

re: 1
im: 2

answer{2}

7-186

read

re: 3
im: 4

answer = read(st,2)

answer =
re: 3

im: 4
answer = read(st,2,'re')

answer =
3

answer = read(st,'re')
answer =

1 3

See Also getmember, isreadable, symbol, write

7-187

readbin

Purpose Data from DSP memory as binary strings

Syntax data = readbin(nn)
data = readbin(nn,[],timeout)
data = readbin(nn,index)
data = readbin(nn,...)

Description data = readbin(nn) returns, as binary strings, the data accessed by
numeric object nn. When nn refers to an array, the returned values
stored in data compose a cell array of binary strings. If the size property
of nn is 1, indicating that nn accesses a scalar, the output in data is an
array of binary characters.

data = readbin(nn,[],timeout) returns all the values accessed
by nn, as indicated by the empty square brackets, []. During read
operations, the timeout property of nn determines the time allowed to
complete the read. Including a value for the timeout input argument in
the readbin syntax lets you override the timeout property setting for nn
with the value you enter for argument timeout. For reading large data
arrays, being able to explicitly set the timeout value as an input option
may be necessary to let readbin run to completion. Note that using the
timeout input option does not change the timeout property value for nn.

data = readbin(nn,index) returns the data element at the index
specified by index from the data block accessed by nn Enter index as
a scalar to return one data value, or a vector to return two or more
values from the data array.

data = readbin(nn,...) returns binary strings as specified by your
combination of all the optional input arguments.

See Also cast, read, write, writebin

7-188

readhex

Purpose Data from DSP memory as hexadecimal strings

Syntax data = readhex(nn)
data = readhex(nn,[],timeout)
data = readhex(nn,index)
data = readhex(nn,...)

Description data = readhex(nn) returns, as hexadecimal strings, the data
accessed by numeric object nn. When nn refers to an array, the returned
values stored in data compose a cell array of hexadecimal strings. If the
size property of nn is 1, indicating that nn accesses a scalar, the output
in data is an array of hexadecimal characters.

data = readhex(nn,[],timeout) returns all the values accessed
by nn, as indicated by the empty square brackets, []. During read
operations, the timeout property of nn determines the time allowed to
complete the read. Including a value for the timeout input argument
lets you override the timeout property setting for nn with the value you
enter for argument timeout. For reading large data arrays, setting
the timeout value as an input option may be necessary to let readhex
run to completion. Note that using the timeout input option does not
change the timeout property value for nn.

data = readhex(nn,index) returns the data element at the index
specified by index from the data block accessed by nn Enter index as
a scalar to return one data value, or a vector to return two or more
values from the data array.

data = readhex(nn,...) returns hexadecimal strings as specified by
your combination of all the optional input arguments.

See Also cast, readbin, write

7-189

readmat

Purpose Matrix of data from RTDX channel

Syntax data = readmat(rx,channelname,'datatype',siz,timeout)
data = readmat(rx,channelname,'datatype',siz)

Description data = readmat(rx,channelname,'datatype',siz,timeout) reads
a matrix of data from an RTDX channel configured for read access.
datatype defines the type of data to read, and channelname specifies
the queue to read. readmat reads the desired data from the RTDX link
specified by rx.

Before you read from a channel, open and enable the channel for read
access.

Replace channelname with the string you specified when you opened
the desired channel. channelname must identify a channel that you
defined in the program loaded on the processor.

You cannot read data from a channel you have not opened and
configured for read access. If necessary, use the RTDX tools provided in
CCS IDE to determine which channels exist for the loaded program.

data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements.
To operate properly, the number of elements in the output matrix data
must be an integral number of channel messages.

When you omit the timeout input argument, readmat reads messages
from the specified channel until the output matrix is full or the global
timeout period specified in rx elapses.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

MATLAB software supports reading five data types with readmat:

7-190

readmat

datatype String Data Format

'double' Double-precision floating point values. 64 bits.
'int16' 16-bit signed integers
'int32' 32-bit signed integers
'single' Single-precision floating point values. 32 bits.
'uint8' Unsigned 8-bit integers

data = readmat(rx,channelname,'datatype',siz) reads a matrix
of data from an RTDX channel configured for read access. datatype
defines the type of data to read, and channelname specifies the queue
to read. readmat reads the desired data from the RTDX link specified
by rx.

Before you read from a channel, open and enable the channel for read
access. Replace channelname with the string you specified to open and
enable the desired channel.

You cannot read data from a channel you have not opened and
configured for read access.

data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements.
To operate properly, the number of elements in the output matrix data
must be an integral number of channel messages.

When you include the timeout input argument, readmat reads
messages from the specified channel until the output matrix is full or
the timeout period elapses.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

MATLAB software supports reading five data types with readmat:

7-191

readmat

datatype String Data Format

'double' Double-precision floating point values, 64 bits.
'int16' 16-bit signed integers.
'int32' 32-bit signed integers.
'single' Single-precision floating point values. 32 bits.
'uint8' Unsigned 8-bit integers.

Examples In this data read and write example, you write data to the processor
through the CCS IDE. You can then read the data back in two ways —
either through read or through readmsg.

To duplicate this example you need to have a program loaded on the
processor. The channels listed in this example, ichannel and ochannel,
must be defined in the loaded program. If the current program on the
processor defines different channels, replace the listed channels with
your current ones.

cc = ticcs;

rx = cc.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

write(cc,0,indata,30);

outdata=read(cc,0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

7-192

readmat

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel','double',[5 5])

See Also readmsg, writemsg

7-193

readmsg

Purpose Read messages from specified RTDX channel

Syntax data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
data = readmsg(rx,channelname,'datatype',siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)
data = readmsg(rx,channelname,datatype)

Description data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
reads nummsgs from a channel associated with rx. channelname
identifies the channel queue, which must be configured for read access.
Each message is the same type, defined by datatype. nummsgs can be
an integer that defines the number of messages to read from the
specified queue, or all to read all the messages present in the queue
when you call the readmsg function. Each read message becomes an
output matrix in data, with dimensions specified by the elements in
vector siz. For example, when siz is [m n], reading 10 messages
(nummsgs equal 10) creates 10 m-by-n matrices in data. Each output
matrix in data must have the same number of elements (m x n) as the
number of elements in each message. You must specify the type of
messages you are reading by including the datatype argument.
datatype supports strings that define the type of data you are
expecting, as shown in the following table.

datatype String Specified Data Type

'double' Floating point data, 64-bits
(double-precision).

'int16' Signed 16-bit integer data.
'int32' Signed 32-bit integers.
'single' Floating-point data, 32-bits

(single-precision).
'uint8' Unsigned 8-bit integers.

7-194

readmsg

When you include the timeout input argument in the function, readmsg
reads messages from the specified queue until it receives nummsgs, or
until the period defined by timeout expires while readmsg waits for
more messages to be available. When the desired number of messages
is not available in the queue, readmsg enters a wait loop and stays
there until more messages become available or timeout seconds elapse.
The timeout argument overrides the global timeout specified when
you create rx.

data = readmsg(rx,channelname,'datatype',siz,nummsgs) reads
nummsgs from a channel associated with rx. channelname identifies
the channel queue, which must be configured for read access. Each
message is the same type, defined by datatype. nummsgs can be an
integer that defines the number of messages to read from the specified
queue, or all to read all the messages present in the queue when you
call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. When siz is [m n], reading 10
messages (nummsgs equal 10) creates 10 n-by-m matrices in data. Each
output matrix in data must have the same number of elements (m x n)
as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type
of data you are expecting.

data = readmsg(rx,channelname,datatype,siz) reads one data
message because nummsgs defaults to one when you omit the input
argument. readmsgs returns the message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the
number of messages defined by nummsgs. data becomes a cell array
of row matrices, data = {msg1,msg2,...,msg(nummsgs)}, because
siz defaults to [1,nummsgs]; each returned message becomes one
row matrix in the cell array. Each row matrix contains one element
for each data value in the current message msg# = [element(1),
element(2),...,element(l)] where l is the number of data elements

7-195

readmsg

in message. In this syntax, the read messages can have different
lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data message,
returning a row vector in data. All of the optional input arguments —
nummsgs, siz, and timeout— use their default values.

In all calling syntaxes for readmsg, you can set siz and nummsgs to
empty matrices, causing them to use their default values — nummsgs = 1
and siz = [1,l], where l is the number of data elements in the read
message.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

Examples cc = ticcs;

rx = cc.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

write(cc,0,indata,30);

outdata=read(cc,0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

7-196

readmsg

Now use RTDX to read the messages into a 4-by-5 array called
out_array.

number_msgs = msgcount(rx,'ochannel') % Check number of msgs

% in read queue.

out_array = cc.rtdx.readmsg('ochannel','double',[4 5])

See Also read, readmat, writemsg

7-197

readnumeric

Purpose Read object in memory and convert to numeric equivalent in MATLAB
environment

Syntax data = readnumeric(objname)
data = readnumeric(objname,index)
data = readnumeric(...,timeout)

Description data = readnumeric(objname) returns all data from the memory area
specified by objname and converts it into a numeric representation. The
properties of objname control the numeric conversion process. Output
data is a numeric array that has dimensions defined by objname.size,
which is the dimensions array. Each element in the dimensions array
specifies the size of the objname array in that dimension. When size is
a scalar, data is a column vector of the specified length.

data = readnumeric(objname,index) returns a subset of the numeric
values from the numeric array specified by objname. Each row of index
is applied as a subscript into the full objname array. Output data
composes a column vector with one value per entry in the data. Array
indices start at one and range up to the maximum value defined by the
value of the property size for objname.

When index is a vector, each row is a single index that defines one
entry from the defined numeric array. data is a column vector of values
corresponding to the specified indices. You can pass a new timeout
value to modify temporarily the default timeout property of objname.

data = readnumeric(...,timeout) adds the optional input argument
timeout that lets you specify how long MATLAB software waits for
the readnumeric operation to return a completion message. When
MATLAB software does not receive notification that the operation
finished within the allotted time, you get a timeout error. You may
find that the operation did complete successfully in spite of the error
message.

7-198

readnumeric

objname Array Properties

Property Name Description

objname.size Dimensions of output numeric array. This
defines the size of the output.

objname.arrayorder Defines how sequential memory locations
are mapped into matrices in MATLAB
software. The default is column major
ordering, which is the default arrangement
in MATLAB software. Alternatively, you
can use row major ordering, which is the
memory organization used in C numeric
representations.

objname.represent Defines the numeric representation in
objname. Valid data types for represent are:

• float — IEEE floating point
representation (32 or 64 bits)

• signed — Two’s complement signed
integers

• unsigned— Unsigned binary integers

• fract — Fractional fixed-point
representation. For more information,
refer to objname.p

objname.wordsize Number of valid bits in the numeric
representation. wordsize is computed
from other properties such as
storageunitspervalue and therefore
this property is read-only.

objname.binarypt Other properties of objname control the
placement and arrangement of the numeric
values in memory.

7-199

readnumeric

Changes to the numeric representation are possible by modifying the
class properties. However, the convert method enables you to adjust
the property values to implement some common data types.

See Also convert, getmember, read, write

7-200

regread

Purpose Value from processor register

Syntax reg = regread(cc,'regname','represent',timeout)
reg = regread(cc,'regname','represent')
reg = regread(cc,'regname')

Description reg = regread(cc,'regname','represent',timeout) reads the
data value in the regname register of the processor and returns the
value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB software double datatype.
Making this conversion lets you manipulate the data in MATLAB
software. String regname specifies the name of the source register on
the processor. ticcs object cc defines the processor to read from. Valid
entries for regname depend on your processor. Register names are not
case-sensitive — a0 is the same as A0.

For example, the TMS320C6xxx processor family provides the following
register names that are valid entries for regname:

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers
B0, B1, B2,..., B15 General purpose B registers
PC, ISTP, IFR, IRP, NRP, AMR,
CSR

Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation
for your processor to determine the registers for the processor.

Note Use read (called a direct memory read) to read memory-mapped
registers.

7-201

regread

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

represent String Description

'2scomp' Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

'binary' Source register contains an unsigned binary
integer.

'ieee' Source register contains a floating point 32-bit or
64-bit value in IEEE floating-point format. Use
this only when you are reading from 32 and 64
bit registers on the processor.

To limit the time that regread spends transferring data from the
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the read operation. You might find this
useful for limiting prolonged data transfer operations. If you omit the
timeout option in the syntax, regread defaults to the global timeout
defined in cc.

reg = regread(cc,'regname','represent') does not set the global
timeout value. The timeout value in cc applies.

reg = regread(cc,'regname') does not define the format of the data
in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned

7-202

regread

later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for local variables as well.

One way to see this is to write a line of code that uses the variable and
see if the result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link CC software.

Examples For the C5xxx processor family, most registers are memory-mapped
and consequently are available using read and write. However, use
regread to read the PC register. The following command demonstrates
how to read the PC register. To identify the processor, cc is a link for
CCS IDE.

cc.regread('PC','binary')

To tell MATLAB software what datatype you are reading, the string
binary indicates that the PC register contains a value stored as an
unsigned binary integer.

In response, MATLAB software displays

ans =

33824

7-203

regread

For processors in the C6xxx family, regread lets you access processor
registers directly. To read the value in general purpose register A0,
type the following function.

treg = cc.regread('A0','2scomp');

treg now contains the two’s complement representation of the value
in A0.

Now read the value stored in register B2 as an unsigned binary integer,
by typing

cc.regread('B2','binary');

See Also read, regwrite, write

7-204

regwrite

Purpose Write data values to registers on processor

Syntax regwrite(cc,'regname',value,'represent',timeout)
regwrite(cc,'regname',value,'represent')
regwrite(cc,'regname',value,)

Description regwrite(cc,'regname',value,'represent',timeout) writes the
data in value to the regname register of the processor. regwrite
converts value from its representation in the MATLAB software
workspace to the representation specified by represent. The represent
input argument defines the format of the data when it is stored in
regname. Input argument represent takes one of three input strings:

represent String Description

'2scomp' Write value to the destination register as
a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

'binary' Write value to the destination register as an
unsigned binary integer.

'ieee' Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the processor.

String regname specifies the name of the destination register on
the processor. cc defines the processor to write value to. Valid
entries for regname depend on your processor. Register names are
not case-sensitive — a0 is the same as A0. For example, the C6xxx
processor family provides the following register names that are valid
entries for regname:

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

7-205

regwrite

Register Names Register Contents

B0, B1, B2,..., B15 General purpose B registers
PC, ISTP, IFR, IRP,
NRP, AMR, CSR

Other general purpose 32-bit registers

A1:A0, A2:A1,...,
B15:B14

64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation
for your processor to determine the registers for the processor.

Note Use write (called a direct memory write) to write memory-mapped
registers.

To limit the time that regwrite spends transferring data to the
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global timeout defined in cc. If the write operation
exceeds the time specified, regwrite returns with a timeout error.
Generally, timeout errors do not stop the register write process. The
write process stops while waiting for CCS IDE to respond that the write
operation is complete.

regwrite(cc,'regname',value,'represent') omits the timeout
input argument and does not change the timeout value specified in cc.

regwrite(cc,'regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

7-206

regwrite

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned
later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for any local variables as well.

One way to see this is to write a line of code that uses the variable and
see if result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link CC software.

Examples To write a new value to the PC register on a C5xxx family processor,
enter

regwrite(cc,'pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following
syntax specifies the value as a string, representation, and processor
registers.

7-207

regwrite

regwrite(cc,'b1:b0',hex2dec('1010'),'ieee')

Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read, regread, write

7-208

reload

Purpose Reload most recent program file to processor signal processor

Syntax s = reload(cc,timeout)
s = reload(cc)

Description s = reload(cc,timeout) resends the most recently loaded program
file to the processor. If you have not loaded a program file in the
current session (so there is no previously loaded file), reload returns
the null entry [] in s indicating that it could not load a file to the
processor. Otherwise, s contains the full path name to the program file.
After you reset your processor or after any event produces changes in
your processor memory, use reload to restore the program file to the
processor for execution.

To limit the time CCS IDE spends trying to reload the program file to
the processor, timeout specifies how long the load process can take. If
the load process exceeds the timeout limit, CCS IDE stops trying to
load the program file and returns an error stating that the time period
expired. Exceeding the allotted time for the reload operation usually
indicates that the reload was successful but CCS IDE did not receive
confirmation before the timeout period passed.

s = reload(cc) reloads the most recent program file, using the
timeout value set when you created link cc, the global timeout setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by cc, reloading the
most recently loaded program on each processor.

This is the same as calling reload for each processor individually
through ticcs objects for each one.

Examples After you create an object that connects to CCS, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error.

7-209

reload

cc=ticcs;

s=reload(cc,23)

Warning: No action taken - load a valid Program file before

you reload...

s =

''

open(cc,'D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt',...

'project')

build(cc)

load(cc,'hellodsp.pjt')

halt(cc)

s=reload(cc,23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also cd, load, open

7-210

remove

Purpose Remove file from active CCS IDE project

Syntax remove(cc,'filename')
remove(cc,'gelfilename')

Description remove(cc,'filename') deletes the file specified by filename from
the active project in CCS IDE. You can remove files that exist in the
active project only. filename must match the name of an existing file
exactly to remove the file.

remove(cc,'gelfilename') deletes the file specified by gelfilename
from the active project in CCS IDE. You can remove files that exist
in the active project only. gelfilename must match the name of an
existing file exactly to remove the file.

Examples After you have a project in CCS IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting .out file. With the project build complete,
load your .out file by typing

load(cc,'filename.out')

Now remove one file from your project, such as the GEL file.

remove(cc,'gelfilename')

You see in CCS IDE that the GEL file no longer appears in the GEL
files folder in CCS.

See Also activate, add, cd, open

7-211

reset

Purpose Reset processor

Syntax reset(cc,timeout)
reset(cc)

Description reset(cc,timeout) stops program execution on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power up settings. The reset function returns
after the processor halts.

To allow you to determine how long reset waits for the processor to
halt, input option timeout lets you set the waiting period in seconds.
After you use reset, the routine returns after the processor halts or
after timeout seconds elapses, whichever comes first.

reset(cc) stops program execution on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power up settings. The reset function returns
after the processor halts. reset uses the global timeout value defined
in cc to determine how long to wait for the processor to halt before
returning. Use get to examine the global timeout value for the link.

Use run to restart the program loaded on the processor.

Compare to halt which does not reset the processor after the program
stops running.

Using reset with Multiprocessor Boards

When your board contains more than one processor, reset calls the
processor resetting function for each processor represented by cc,
resetting each processor.

This is the same as calling reset for each processor individually
through ticcs objects for each one.

Note that the run and halt methods still apply as mentioned earlier
in this section.

See Also halt, restart, run

7-212

reshape

Purpose Reshape array maintaining same number of elements

Syntax reshape(x,[m,n])
reshape(x,[m,n,p...])
reshape(x,[m n p ...])
reshape(x,[...,[],...])

Description reshape(x,[m,n]) returns the m-by-n array whose elements are taken
by column from x. If x does not have m*n elements, reshape returns an
error from the operation.

Generally, reshape(x,siz) returns an n-dimensional array with the
same elements as x, but reshaped to size(siz). Note that prod(siz)
must be the same as prod(size(x)).

reshape(x,[m,n,p...]) returns an n-dimensional array with the same
number of elements as x, but reshaped to have size m-by-n-by-p-by-....
For the reshape operation to work, m*n*p*... must equal prod(size(x)).

reshape(x,[m n p ...]) is the same as the preceding syntax.

reshape(x,[...,[],...]) calculates the length of the dimension
replaced by [] in the command, so that the product of the dimensions
equals prod(size(x)). For the length calculation to succeed,
prod(size(x)) must be evenly divisible by the product of the known
dimensions (all the dimensions exclusive of the unknown dimension).
Within the call, you are allowed to use one set of square brackets for
one unknown dimension.

7-213

restart

Purpose Restore program counter to entry point for current program

Syntax restart(cc,timeout)
restart(cc)

Description restart(cc,timeout) halts the processor immediately and resets
the program counter (PC) to the program entry point for the loaded
program. Use run to execute the program after you use restart.
restart does not execute the program after resetting the PC. timeout
allows you to specify how long restart waits for the processor to stop
and return the PC to the program entry point. Specify the value for
timeout in seconds. After you use restart, the restart routine returns
after resetting the PC or after timeout seconds elapse, whichever comes
first. If the timeout period expires, restart returns a timeout error.

restart(cc) halts the processor immediately and resets the PC to the
program entry point for the loaded program. Use run to execute the
program after you use restart. restart does not execute the program
after resetting the PC. When you omit the timeout argument, restart
uses the global default timeout period defined in cc to determine how
long to wait for the processor to stop and the PC to be reset to the
program entry point.

Using restart with Multiprocessor Boards

When your board contains more than one processor, restart calls the
processor restarting function for each processor represented by cc,
restarting the program loaded on each processor.

This is the same as calling restart for each processor individually
through ticcs objects for each one.

Examples When you are developing algorithms for your processor, restart
becomes a particularly useful function. Rather than resetting the
processor after each algorithm test, use the restart function to return
the program counter to the program entry point. Because restart
restores your local variables to their initial settings, but does not reset
the processor, you are ready to rerun your algorithm with new values.

7-214

restart

When your process gets lost or halts, restart is a quick way to restore
your program.

See Also halt, isrunning, run

7-215

resume

Purpose Resume execution of stopped or paused function

Syntax resume(ff)

Description resume(ff) restarts the function ff from where you stopped it or
paused it. The function runs until completion or until it encounters
a breakpoint.

See Also restart, run

7-216

run

Purpose Execute program loaded on processor

Syntax run(cc,'state',timeout)
run(cc,'main')
run(cc,'tofunc','functionname')
run(ff)
run(ff,input1,value1,input2,value2,...,inputn,valuen)
output = run(ff)

Description run(cc,'state',timeout) starts to execute the program loaded on the
processor referred to by cc. Program execution starts from the location
of the program counter. After starting program execution, the input
argument state determines when you regain program control.

To define the action of run, state accepts strings that set the state
of the processor:

state String Run Action

'main' Reset the program counter then run the
program until the PC reaches main. Stop at
main.

'run' Start to execute the program. Wait until the
program is running, then return. The program
continues to run. If you omit the option
argument, run defaults to this setting. Sets
the processor to the running state and returns.
This is useful when you want to continue to
work in MATLAB software while the processor
executes a program.

'runtohalt' Start to execute the program. Wait to return
until the program encounters a breakpoint or
the program execution terminates. Sets the
processor to the running state and returns
when the processor halts.

7-217

run

state String Run Action

'tofunc' Run the program from the current position of
the program counter to the start of a specified
function functionname.

'tohalt' Changes the state of a running process to
runtohalt, and waits for the processor to halt
before returning. Use this when you want to
stop a running process cleanly. If the processor
is already stopped when you use this state
setting, run returns immediately.

To allow you to specify how long run waits for the processor to start
executing the loaded program before returning, the input argument
timeout lets you set the waiting period in seconds.

After you use run, the routine returns after confirming that the program
started to execute, or after timeout seconds elapses, whichever comes
first. If the timeout period expires, run returns a timeout error.

run(cc,'main') resets the program counter in your project then runs
the program linked to cc until the counter reaches the start of main.

run(cc,'tofunc','functionname') runs the program from the
current position of the program counter until the counter reaches the
function functionname. Compare this to run(cc,'main') which resets
the program counter before executing the program. Using the tofunc
option does not reset the program counter.

run(ff) runs the function ff and puts the return value in the
appropriate location. run performs a goto followed by execute to run
ff.

run(ff,input1,value1,input2,value2,...,inputn,valuen) writes
the input values for ff before running the function, where valuen is
the value for the input argument inputn. You can pass up to 10 input
arguments and their values when you call run.

output = run(ff) puts the return value from running ff in output.

7-218

run

Using run with Multiprocessor Boards

When your board contains more than one processor, run calls the
program running function for each processor represented by cc, running
the program loaded on each processor.

This is the same as calling run for each processor individually through
ticcs objects for each one. The other information about run on a single
processor applies to each processor in the multiple processor cases.

Examples After you build and load a program to your processor, use run to start
execution.

cc = ticcs('boardnum',0,'procnum',0); % Create a link to CCS

% IDE.

cc.load('tutorial_6xevm.out'); % Load an executable file to the

% processor.

cc.rtdx.configure(1024,4); % Configure four buffers for data

% transfer needs.

cc.rtdx.open('ichan','w'); % Open RTDX channels for read and

% write.

cc.rtdx.enable('ichan');

cc.rtdx.open('ochan','r');

cc.rtdx.enable('ochan');

cc.restart; % Return the PC to the beginning of the current

% program.

cc.run('run'); % Run the program to completion.

This example uses a tutorial program included with Embedded IDE
Link CC. Set your CCS IDE working directory to be the one that holds
your project files. The load function uses the current working directory
unless you provide a full path name in the input arguments.

7-219

run

Rather than using the dot notation to access the RTDX functions, you
can create an alias to the cc link and use the alias in later commands.
Thus, if you add the line

rx = cc.rtdx;

to the program, you can replace

cc.rtdx.configure(1024,4);

with

configure(rx,1024,4);

See Also halt, isrunning, restart

7-220

save

Purpose Save files and projects in CCS IDE

Note save(cc,filename,'text') produces a warning and text will
not be accepted in a future version.

Syntax save(cc,'filename','type')

Description save(cc,'filename','type') save the file in CCS IDE identified by
filename of type ’type’. type identifies the type of file to save, either
project files when you use ’project' for type, or text files when you use
'text' for the type option. To save a specific file in CCS IDE, filename
must match the name of the file to save exactly. If you replace filename
with 'all', save writes every open file whose type matches the type
option. File types recognized by save include these extensions.

type String Affected files

'project' Project files with the .pjt extension.
'text' All files with these extensions — a*, .c, .cc, .ccx,

.cdb, .cmd, .cpp, .lib, .o*, .rcp, and .s*. Note that
'text' does not save .cfg files.

When you replace filename with the null entry [], save writes to
storage the current active file window in CCS IDE, or the active project
when you specify project for the type option.

Examples To clarify the different save options, here are commands that save open
files or projects in CCS IDE.

Command Result

save(cc,'all','project') Save all open projects in
CCS IDE.

save(cc,'my.pjt','project') Save the project my.pjt.

7-221

save

Command Result

save(cc,[],project') Save the active project.
save(cc,'all','text') Save all open text files. This

includes source file, libraries,
command files, and others.

save(cc,'my_source.cpp','text')Save the text file
my_source.cpp.

save(cc,[],'text') Save the active file window.

See Also add, cd, close, open

7-222

set

Purpose Set CCS IDE and RTDX interface properties of ticcs object

Syntax set(cc,'propertyname','propertyvalue')
set(cc,'propname1','propvalue1','propname2','propvalue2')
cc.propertyname = propertyvalue
set(rx,'propertyname','propertyvalue')
set(rx,'propname1','propvalue1','propname2','propvalue2')
v = set(rx)
rx.propertyname = propertyvalue

Description set(cc,'propertyname','propertyvalue') sets the specified
property of cc to the specified value.

set(cc,'propname1','propvalue1','propname2','propvalue2')
sets multiple properties (propname1, propname2) of cc to corresponding
property values (propvalue1, propvalue2) with a single statement. cc
must be a link.

cc.propertyname = propertyvalue uses the dot notation to set
propertyname to propertyvalue.

set(rx,'propertyname','propertyvalue') sets the specified
property of rx to the specified value.

set(rx,'propname1','propvalue1','propname2','propvalue2')
sets multiple properties (propname1, propname2) of rx to corresponding
property values (propvalue1, propvalue2) with a single statement.

v = set(rx) returns the properties and range of values of link rx. rx is
the RTDX portion of a link for CCS IDE. When the range of values for a
property is not finite, set returns {} for the property value. When you
omit the output argument, MATLAB software displays the results on
the screen.

rx.propertyname = propertyvalue uses the dot notation to set
propertyname to propertyvalue for link rx.

Examples Create a connection to CCS IDE

cc = ticcs;

7-223

set

Now set a property value for the board name of cc.

set(cc,'boardname','myboard')
get(cc,'boardname')

ans =

myboard

Set timeout to 10 s and page to 2. Property eventwaitms cannot be
set. It is read-only.

set(cc,'timeout',10)

See Also get

7-224

symbol

Purpose Program symbol table from CCS IDE

Syntax s = symbol(cc)

Description s = symbol(cc) returns the symbol table for the program loaded in
CCS IDE. symbol only applies after you load a processor program file.
s is an array of structures where each row in s presents the symbol
name and address in the table. Therefore, s has two columns; one is
the symbol name, and the other is the symbol address and symbol page.
For example, this table shows a few possible elements of s, and their
interpretation.

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.
s(1).address(1) Address or value of symbol entry.
s(1).address(2) Memory page for the symbol entry. For TI

C6xxx processors, the page is 0.

You can use field address in s as the address input argument to read
and write.

It you use symbol and the symbol table does not exist, s returns empty
and you get a warning message.

Symbol tables are a portion of a COFF object file that contains
information about the symbols that are defined and used by the file.
When you load a program to the processor, the symbol table resides in
CCS IDE. While CCS IDE may contain more than one symbol table
at a time, symbol accesses the symbol table belonging to the program
you last loaded on the processor.

Examples Demonstrating this function requires that you load a program file to
your processor. In this example, build and load Embedded IDE Link
CC demo program c6711dskafxr. Start by entering c6711dskafxr
at the MATLAB software prompt.

7-225

symbol

c6711dskafxr;

Now set the simulation parameters for the model and build the model to
your processor. With the model loaded on your processor, use symbol to
return the entries stored in the symbol table in CCS IDE.

cc = ticcs;
s = symbol(cc);

s contains all the symbols and their addresses, in a structure you can
display with the following code:

for k=1:length(s),disp(k),disp(s(k)),end;

MATLAB software lists the symbols from the symbol table in a column.

See Also load, run

7-226

ticcs

Purpose Create object that refers to CCS IDE

Syntax cc = ticcs
cc = ticcs('propertyname’,'propertyvalue’,...)

Description cc = ticcs returns a ticcs object in cc that MATLAB software uses
to communicate with the default processor. In the case of no input
arguments, ticcs constructs the object with default values for all
properties. CCS IDE handles the communications between MATLAB
software and the selected CPU. When you use the function, ticcs starts
CCS IDE if it is not running. If ticcs opened an instance of the CCS
IDE when you issued the ticcs function, CCS IDE becomes invisible
after Embedded IDE Link CC creates the new object.

Note When ticcs creates the object cc, it sets the working directory for
CCS IDE to be the same as your MATLAB software working directory.
When you create files or projects in CCS IDE, or save files and projects,
this working directory affects where you store the files and projects.

Each object that accesses CCS IDE comprises two objects — a ticcs
object and an rtdx object — that include the following properties.

7-227

ticcs

Object Property Name Property Default Description

'apiversion' API version N/A Defines the API version
used to create the link

'proctype' Processor
Type

N/A Specifies the kind of
processor on the board

'procname' Processor
Name

CPU Name given to the
processor on the board
to which this object links

'status' Running No Status of the program
currently loaded on the
processor

'boardnum' Board
Number

0 Number that CCS assigns
to the board. Used to
identify the board

'procnum' Processor
number

0 Number the CCS assigns
to a processor on a board

ticcs

'timeout' Default
timeout

10.0 s Specifies how long
MATLAB software waits
for a response from CCS
after issuing a request.
This also applies when
you try to construct a
ticcs object. The create
process waits for this
timeout period for the
connection to the processor
to complete. If the timeout
period expires, you get an
error message that the
connection to the processor
failed and MATLAB
software could not create
the ticcs object.

7-228

ticcs

Object Property Name Property Default Description

'timeout' Time-out 10.0 s Specifies how long CCS
waits for a response
from the processor after
requesting data

rtdx

'numchannels' Number
of open
channels

0 The number of open
channels using this link

type type Defined
types in the
object

Void,
Float,
Double,
Long,
Int,
Short,
Char

List of the C data types
in the project cc accesses.
Use add to include your
C type definitions to the
list

cc = ticcs('propertyname’,'propertyvalue’,...) returns a handle
in cc that MATLAB software uses to communicate with the specified
processor. CCS handles the communications between the MATLAB
environment and the CPU.

MATLAB software treats input parameters to ticcs as property
definitions. Each property definition consists of a property
name/property value pair.

Two properties of the ticcs object are read only after you create the
object:

• 'boardnum' — the identifier for the installed board selected from
the active boards recognized by CCS. If you have one board, use the
default property value 0 to access the board.

• 'procnum'— the identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to
specify the processor on the board. On boards with one processor, use
the default property value 0 to specify the processor.

7-229

ticcs

Given these two properties, the most common forms of the ticcs
method are

cc = ticcs('boardnum',value)

cc = ticcs('boardnum',value,'procnum',value)

cc = ticcs(...,'timeout',value)

which specify the board, and processor in the second example, as the
processor.

The third example adds the timeout input argument and value to allow
you to specify how long MATLAB software waits for the connection to
the processor or the response to a command to return completed.

Note The output (left-hand argument) object name you provide for
ticcs cannot begin with an underscore, such as _cc.

You do not need to specify the boardnum and procnum properties when
you have one board with one processor installed. The default property
values refer correctly to the processor on the board.

Note Simulators count as boards. If you defined both boards and
simulators in CCS IDE, specify the boardnum and procnum properties
to connect to specific boards or simulators. Use ccsboardinfo to
determine the values for the boardnum and procnum properties of your
boards and simulators.

Because these properties are read only after you create the handle,
you must set these property values as input arguments when you use
ticcs. You cannot change these values after the handle exists. After
you create the handle, use the get function to retrieve the boardnum
and procnum property values.

7-230

ticcs

Using ticcs with Multiple Processor Boards

When you create ticcs objects that access boards that contain more
than one processor, such as the OMAP1510 platform, ticcs behaves
a little differently.

For each of the ticcs syntaxes above, the result of the method changes
in the multiple processor case, as follows.

cc = ticcs

cc = ticcs('propertyname',propertyvalue)

cc = ticcs('propertyname',propertyvalue,'propertyname',...

propertyvalue)

In the case where you do not specify a board or processor:

cc = ticcs

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 0

Processor 0 (element 1): TMS470R2127 (MPU, Not Running)

Processor 1 (element 2): TMS320C5500 (DSP, Not Running)

Where you choose to identify your processor as an input argument to
ticcs, for example, when your board contains two processors:

cc = ticcs('boardnum',2)

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

cc returns a two element object handle with cc(1) corresponding to the
first processor and cc(2) corresponding to the second.

7-231

ticcs

You can include both the board number and the processor number in
the ticcs syntax, as shown here:

cc = ticcs('boardnum',2,'procnum',[0 1])

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Enter procnum as either a single processor on the board (a single value
in the input arguments to specify one processor) or a vector of processor
numbers, as shown in the example, to select two or more processors.

Support Coemulation and OMAP

Coemulation, defined by Texas Instruments to mean simultaneous
debugging of two or more CPUs, allows you to coordinate your debugging
efforts between two or more processors within one device. Efficient
development with OMAP™ hardware requires coemulation support.
Instead of creating one cc object when you issue the following command

cc = ticcs

or your hardware that has multiple processors, the resulting cc object
comprises a vector of cc objects cc(1), cc(2), and so on, each of which
accesses one processor on your device, say an OMAP1510. When your
processor has one processor, cc is a single object. With a multiprocessor
board, the cc object returns the new vector of objects. For example,
for board 2 with two processors,

cc = ticcs

returns the following information about the board and processors:

cc = ticcs('boardnum',2)

Array of TICCS Objects:

7-232

ticcs

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Checking the existing boards shows that board 2 does have two
processors:

ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

2 OMAP 3.0 Platform Simulator [T ... 0 MPU TMS470R2x

2 OMAP 3.0 Platform Simulator [T ... 1 DSP TMS320C550

1 MGS3 Simulator [Texas Instruments] 0 CPU TMS320C5500

0 ARM925 Simulator [Texas Instru ... 0 CPU TMS470R2x

Examples On a system with three boards, where the third board has one processor
and the first and second boards have two processors each, the following
function:

cc = ticcs('boardnum',1,'procnum',0);

returns an object that accesses the first processor on the second board.
Similarly, the function

cc = ticcs('boardnum',0,'procnum',1);

returns an object that refers to the second processor on the first board.

To access the processor on the third board, use

cc = ticcs('boardnum',2);

7-233

ticcs

which sets the default property value procnum= 0 to connect to the
processor on the third board.

cc = ticcs

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 1

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

cc.type % Returns information about the type object

Defined types : Void, Float, Double, Long, Int, Short, Char

See Also get, ccsboardinfo, set

7-234

visible

Purpose Set whether CCS IDE window is visible while CCS runs

Syntax visible(cc,state)

Description visible(cc,state) sets CCS IDE to be visible or not visible on the
desktop. Input argument state accepts either 0 or 1 to set the visibility.
Setting state equal to 0 makes CCS IDE not visible on the desktop.
However, the CCS IDE process runs in the background while the
window is not visible.

Running CCS IDE without making it visible lets you use the CCS IDE
functions from MATLAB software, without interacting with CCS IDE.
If you need to interact with CCS IDE, set state equal to 1. This makes
CCS IDE visible and you can use the features of the user window.

An important feature of visible is that it creates a new link to CCS
IDE when you change the IDE visibility. As a result, after you use

visible(cc,state)

to make CCS IDE show on your desktop, the MATLAB software clear
all function does not remove the visibility handle. You must remove
the handle explicitly before you use clear.

To see the visibility difference, open CCS and use Microsoft Windows
Task Manager to look at the applications and processes running on your
computer. When CCS IDE is visible (the normal startup and operating
mode for the IDE), CCS IDE appears listed on the Applications
page of Task Manager. And the process cc_app.exe shows up on the
Processes page as a running process. When you set CCS IDE to not
visible (state equal 0), CCS IDE disappears from the Applications
page, but remains on the Processes page, with a process ID (PID),
using CPU and memory resources.

7-235

visible

Note When you close MATLAB software while CCS IDE is not visible,
MATLAB software closes CCS if it launched the IDE. For more
information about visibility and CCS, refer to “Running Code Composer
Studio Software on Your Desktop — Visibility” on page 2-6.

Examples Test to see whether CCS IDE is running. Then change the visibility
and check again. Start by launching CCS IDE. Then open MATLAB
software and at the prompt, enter

cc=ticcs;

MATLAB software creates a link to CCS IDE and leaves CCS IDE
visible on your desktop.

isvisible(cc)

ans =
1

Now, change the visibility state to 0, or invisible, and check the state.

visible(cc,0)
isvisible(cc)

ans =
0

Notice that CCS IDE is not visible on your desktop. Recall that
MATLAB software did not open CCS IDE. When you close MATLAB
software with CCS IDE in this invisible state, CCS IDE remains
running in the background. To close it, do one of the following
operations.

• Start MATLAB software. Create a new link to CCS IDE. Use the new
link to make CCS IDE visible. Close CCS IDE.

7-236

visible

• Open Microsoft Windows Task Manager. Click Processes. Find and
highlight cc_app.exe. Click End Task.

See Also isvisible, load

7-237

write

Purpose Write data to memory on processor

Syntax write(cc,address,data,timeout)
write(cc,address,data)
write(objname)
write(objname,index)
write(objname,structindex,mem1,value1,mem2,value2,...,memn,

valuen,memindex)

Description ticcs Object Syntaxes

write(cc,address,data,timeout) sends a block of data to memory on
the processor referred to by cc. The address and data input arguments
define the memory block to write—where the memory starts and what
data is being written. The memory block to write to begins at the
memory location defined by address. data is the data to write, and can
be a scalar, a vector, a matrix, or a multidimensional array.
Data get written to memory in column-major order. timeout is an
optional input argument you use to terminate long write processes
and data transfers. For details about each input parameter, read the
following descriptions.

To update values in memory on a running processor, such as values
to change during processing, insert one or more breakpoints in the
project code and perform the write operation while the processor code
is paused at one of the breakpoints. After you read the data, release
the breakpoint.

Note Do not attempt to write data to the processor while it is running.

address— write uses address to define the beginning of the memory
block to write to. You provide values for address as either decimal or
hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset

7-238

write

and the memory page, entered as a vector [location, page], a string,
or a decimal value.

When the processor has only one memory page, as is true for many
digital signal processors, the value of the page portion of the memory
address is 0. By default, ticcs sets the page value to 0 at creation if
you omit page as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property Value Address Type Interpretation

1F String Offset is 31 decimal on the
page referred to by cc.page

10 Decimal Offset is 10 decimal on the
page referred to by cc.page

[18,1] Vector Offset is 18 decimal on
memory page 1 (cc.page =
1)

To specify the address in hexadecimal format, enter the address
property value as a string. write interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the write uses hex2dec. When you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults to
the page specified by cc.page..

data— the scalar, vector, or array of values that are written to memory
on the processor. write supports the following data types:

Datatypes Description

double Double-precision floating point values

7-239

write

Datatypes Description

int8 Signed 8-bit integers
int16 Signed 16-bit integers
int32 Signed 32-bit integers
single Single-precision floating point data
uint8 Unsigned 8-bit integers
uint16 Unsigned 16-bit integers
uint32 Unsigned 32-bit integers

To limit the time that write spends transferring data from the
processor, the optional argument timeout tells the data transfer
process to stop after timeout seconds. timeout out is defined as the
number of seconds allowed to complete the write operation. You may
find this useful for limiting prolonged data transfer operations. If you
omit the timeout option in the syntax, write defaults to the global
timeout defined in cc.

write(cc,address,data) sends a block of data to memory on the
processor referred to by cc. The address and data input arguments
define the memory block to be written—where the memory starts and
what data is being written. The memory block to be written to begins at
the memory location defined by address. data is the data to be written,
and can be a scalar, a vector, a matrix, or a multidimensional array.

Data get written to memory in column-major order. Refer to the
preceding syntax for details about the input arguments. In this syntax,
timeout defaults to the global timeout period defined in cc.timeout.
Use get to determine the default timeout value.

Like the isreadable, iswritable, and read functions, write checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

7-240

write

Writing Negative Values

Writing a negative value causes the data written to be saturated
because char is unsigned on the processor. Hence, a 0 (a NULL) is
written instead. A warning results as well, as this example shows.

cc = ticcs;

ff = createobj(cc,'g_char'); % Where g_char is in the code.

write(ff,-100);

Warning: Underflow: Saturation was required to fit the data into

an addressable unit.

When you try to read the data you wrote, the character being read is
0 (NULL) — so there seems to be nothing returned by the read function.

You can demonstrate this by the following code, after writing a negative
value as shown in the previous example.

readnumeric(x)
ans =
0
read(x) % Reads the NULL character.
ans = % Apparently nothing is returned.

double(read(x)) % Read the numeric equivalent of NULL.
ans = % Again, appears not to return a value.

Embedded Object Syntaxes

write works with all of the objects you create with createobj. To
transfer data from MATLAB environment to CCS, use one of the
write functions — write— depending on the data to write. Note that
write and its variants are the only way to get data from the MATLAB
environment to CCS from objects.

write(objname) writes all the data in objname to the location
accessed by object objname. Properties of objname, such as wordsize,
storageunitspervalue, size, represent, and binarypt— determine
how write performs the numeric conversion.

7-241

write

data is a numeric array whose dimensions are defined by the size
property of objname. Object property size is the dimensions vector.
Each element in the dimensions vector contains the size of the data
array in that dimension. When size is a scalar, data is a column vector
of the length specified by size.

For example, when size is [2 3], data is a 2-by-3 array.

Properties of the Object

objname, the object that accesses the data, has the following properties,
if the object is a numeric object. The properties are different for different
types of objects, such as structure objects or register objects.

Property Options Description

size Greater than 1 Specifies the dimensions of
the output numeric array.

arrayorder col-major or
row-major

Defines how to map
sequential memory
locations into arrays.
col-major is the default,
and the MATLAB
software standard. C uses
row-major ordering most
often.

7-242

write

Property Options Description

represent float, signed,
unsigned, fract

Determines the numeric
representation used in the
output data.

• float — IEEE floating
point representation,
either 32- or 64 bits

• signed — two’s
complement signed
integers

• unsigned — unsigned
binary integer

• fract — fractional
fixed-point data

wordsize Greater than 1 (Read-only) Calculated
from other object
properties such as
storageunitspervalue

binarypt 0 to wordsize Determines the position of
the binary point in a word
to specify its interpretation

write(objname,index) writes the data in objname to the memory
location accessed by objname. Input argument index (called the address
offset) is a scalar or a vector that identifies the particular data element
to write to at the location in memory. When you enter [] for index,
write writes all the data in objname to the memory location it accesses.
When you enter a scalar for index, write outputs a column vector of
length size containing the referenced data to the memory space starting
at index. When index is a vector, write outputs the referenced data
elements to the memory locations specified by the entries in the vector.

7-243

write

For example, if you are writing one data element to a 3-by-3-by-3 array
in memory, setting index to be [2 2 2] writes the data value to the
element (2,2,2) in memory. To write more than one element at a time,
use MATLAB software standard range notation for the vector elements
in index. As an example, when index is [1:6], write writes six data
values to the first six memory locations. Remember that the number
of elements in the vector in index must be either one (a scalar) or the
same as the number of memory locations available and specified by the
property size of objname.

When objname represents a four dimensional array, your vector
in index must have four elements, one for each array dimension.
Otherwise, write cannot determine where to write the elements in
memory.

write(objname,structindex,mem1,value1,mem2,value2,...,memn,valuen,meminde
writes the members of the structure that objname accesses. When you
omit all of the input arguments except objname, write writes the entire
structure. memn, valuen, memindex, and stindex (an optional input
argument) specify which structure member to write:

• memn— Specifies the name of the member of the structure to write

• valuen— Specifies the value to write to membern

• memindex— Provides the index of the data element to write

• structindex — Identifies the structure to write when objname
accesses a structure containing structures or a vector

Note that the class of the object data from the write operation depends
on the class of the member being written — numeric objects write
numeric values, string objects write string values, and so on.

When you need to write one member of a structure or to do individual
write operations, consider using getmember.

Using write with Embedded Objects

When you are writing data into memory on your processor, consider a
number of points that affect how write performs the write operation.

7-244

write

• The data you write to the processor can be either numeric or
hexadecimal format.

• When the data you are writing contains values that exceed the
representable range for the variable date type and word size, the
values written saturate to the maximum or minimum representable
value for the variable representation. For example, if you try to write
the value 70000 into an unsigned, 16-bit variable, the write operation
stores 65535 into memory. 65535 is the maximum representable
value for unsigned, 16-bit integers. Similarly, if you try to write -3 to
the same variable, the stored value will be 0—you cannot represent
negative numbers in the unsigned format.

• When you write more data elements to memory than fit in the
specified size of the memory block, only the number of elements that
fit in the memory block get written to the processor. Excess elements
do not get stored and are lost.

• When you write fewer data elements to memory than fit in the
specified size of the memory block, all the elements get written to the
memory block on the processor. Memory space in the block which
does not receive new elements is not affected by the write operation
and remains unchanged.

• Use separate write operations to write multiple data elements to
different locations within the memory block accessed by an object.
For example, to write to the fifth and eighth elements of a 1-by-10
array in memory accessed by an object, use write twice — once
to write to the fifth memory location and the again to write to the
eighth location. You cannot combine the write operations in a single
command unless the memory locations are contiguous. Refer to the
next item in this list for information about writing to contiguous
memory locations within a memory block.

• To write a block of data into contiguous locations in the memory
block accessed by the object, supply just the starting index for the
locations in the memory block.

7-245

write

Writing Strings to Memory

Writing strings to memory has some idiosyncrasies. Recall the following
points when you use write with string data.

• Data that you write to memory can be numeric or string data.

• When your data is strings or characters, the write operation is
controlled by the charconversion property value for the object.
write accepts and writes only characters with ASCII values from 0
to 127 when the charconversion property value is ASCII.

• Numeric data is not restricted in any way when you use write.

• write appends a null character as the last element written to
memory, except when

- You write numeric data.

- The object points to a single ANSI C character (size equals 1).

- The amount of data you are writing exceeds the allocated space.

• When the string data you write does not fill the allotted space in
memory, write does not fill the extra space with zeros — no zero
padding.

Writing to Structures

When you are writing data to a particular index within the structure,
consider using getmember to create an object that accesses the desired
member. Then use your new object as objname in the write function
call.

Refer to the section “Embedded Object Examples” on page 7-247 for
examples of write in use with structures.

Examples ticcs Object Examples

Connect to a processor and write data to it. In this example, CCS IDE
recognizes one board having one processor.

cc = ticcs;

7-246

write

cc.visible(1);

write(cc,'50',1:250);

mem = read(cc,0,'double',50) % Returns 50 values as a column

% vector in mem.

It may be more convenient to return the data in an array. If you enter
a vector for count, mem contains a matrix of dimensions the same as
vector count.

write(cc,10,1:100);

mem=read(cc,10,'double',[10 10])

mem =

1 11 21 31 41 51 61 71 81 91

2 12 22 32 42 52 62 72 82 92

3 13 23 33 43 53 63 73 83 93

4 14 24 34 44 54 64 74 84 94

5 15 25 35 45 55 65 75 85 95

6 16 26 36 46 56 66 76 86 96

7 17 27 37 47 57 67 77 87 97

8 18 28 38 48 58 68 78 88 98

9 19 29 39 49 59 69 79 89 99

10 20 30 40 50 60 70 80 90 100

Embedded Object Examples

The following examples show you some of the details about using write
with embedded objects. Also, you can find an example or two for each
of the items in the list from the section “Using write with Embedded
Objects” on page 7-244.

When you try to write more elements to the memory space than the
space can hold, write ignores the extra elements, storing only the ones
that fit. In this example, mm is an object that access a 1-by-10 variable
in memory.

• Writing 15 elements to the 1-by-10 array

7-247

write

write(mm,[1:15])

results in elements 1 through 10 (or [1:10]) being written to memory.
Elements 11 through 15 are ignored.

• Writing 5 element to the 1-by-10 array

write(mm,[1:5])

results in elements [1:5] being written to memory without changing
the values in memory for element [6:10].

To write multiple element to different indices in the 1-by-10 array, use
multiple write calls.

write(mm,5,6)

writes value 6 to the fifth index in the array. Now to write another
value to a different index, use

write(mm,7,9)

which writes value 9 to the seventh element of the array. Trying to
use one call like

write(mm,[5 7],[6 9])

to write 6 into index 5 and 9 into index 7 does not work.

Examples That Write Strings

Embedded object mm accesses a 1-by-12 array in memory on the
processor.

To write a string to processor memory, use

write(mm,'Hello World')

which writes 11 characters to memory plus the additional null character
at the end of the string.

7-248

write

H e l l o W o r l d \0 M

Notice that the M at the end of the memory space is not affected by the
write operation. Now write a new string to memory, such as “Ciao.”

write(mm,'Ciao')

After writing to memory, the stored string looks like:

C i a o \0 W o r l d \0 M

where the fifth element now holds the null character that resulted from
writing Ciao to indices 1 through 4, plus the null character in index 5.
All the characters after index 5 remain the same. Recall that if you now
read the memory, the read operation stops at the first null character
and does not return “World” or “M.”

See Also read, symbol

7-249

writebin

Purpose Write binary data to processor memory

Syntax writebin(mm,data)
writebin(mm,data,[])
writebin(mm,data,index)
writebin(...,timeout)

Description writebin(mm,data) writes a block of binary strings data into the
memory block described by mm. data is string containing 0 or 1 or a
cell array of binary strings of 0s and 1s. Writing to the processor fails
when data has more entries than the memory range covers as specified
by mm. Conversely, when data has fewer elements than the memory
range allows, writebin starts writing data at the first address in the
memory location.

writebin(mm,data,[]) same as writebin(mm,data).

writebin(mm,data,index) Writes a single binary string data to the
specified index (the address offset).

writebin(...,timeout) adds the optional timeout input argument to
specify the time allowed for the write operation to finish. Changing the
default time out value may be necessary when you write large arrays to
memory. Note that when MATLAB software returns an error that the
timeout period expired, it does not necessarily mean the write failed.
Only that MATLAB software did not receive notification about the write
operation finishing before the allotted time passed. The write operation
usually works correctly in spite of the message.

See Also read, write

7-250

writemsg

Purpose Write messages to specified RTDX channel

Syntax data = writemsg(rx,channelname,data)
data = writemsg(rx,channelname,data)

Description data = writemsg(rx,channelname,data) writes data to a channel
associated with rx. channelname identifies the channel queue, which
must be configured for write access. All messages must be the same
type for a single write operation. writemsg takes the elements of matrix
data in column-major order.

To limit the time that writemsg spends transferring messages from the
processor, the optional argument timeout tells the message transfer
process to stop after timeout seconds. timeout is defined as the number
of seconds allowed to complete the write operation. You may find this
useful for limiting prolonged data transfer operations. If you omit the
timeout option in the syntax, write defaults to the global timeout
period defined in cc.

writemsg supports the following data types: uint8, int16, int32,
single, and double.

data = writemsg(rx,channelname,data) uses the global timeout
setting assigned to cc when you create the link.

Examples After you load a program to your processor, configure a link in RTDX
for write access and use writemsg to write data to the processor. Recall
that the program loaded on the processor must define ichannel and the
channel must be configured for write access.

cc=ticcs;

rx = cc.rtdx;

open(rx,'ichannel','w'); % Could use rx.open('ichannel','w')

enable(rx,'ichannel');

inputdata(1:25);

writemsg(rx,'ichannel',int16(inputdata));

7-251

writemsg

As a further illustration, the following code snippet writes the messages
in matrix indata to the write-enabled channel specified by ichan.
Note again that this example works only when ichan is defined by the
program on the processor and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
writemsg(cc.rtdx,'ichan',indata);

The matrix indata is written by column to ichan. The preceding
function syntax is equivalent to

writemsg(cc.rtdx,'ichan',[1:9]);

See Also readmat, readmsg, write

7-252

8

Block Reference

8 Block Reference

C280x/C28x3x DSP Chip Support (ccslinklib_c280x)

C280x/C28x3x Hardware Interrupt Interrupt Service Routine to
handle hardware interrupt on
C280x/C28x3x processor

Idle Task Create free-running task
Memory Allocate Allocate memory section
Memory Copy Copy to and from memory section

C281x DSP Chip Support (ccslinklib_c281x)

C281x Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt

Idle Task Create free-running task
Memory Allocate Allocate memory section
Memory Copy Copy to and from memory section

C5xxx DSP Chip Support (ccslinklib_c5xxx)
Hardware Interrupt Interrupt Service Routine to handle

hardware interrupt on C5xxx and
C6xxx processors

Idle Task Create free-running task
Memory Allocate Allocate memory section
Memory Copy Copy to and from memory section

8-2

C6xxx DSP Chip Support (ccslinklib_c6xxx)

C6xxx DSP Chip Support (ccslinklib_c6xxx)
Hardware Interrupt Interrupt Service Routine to handle

hardware interrupt on C5xxx and
C6xxx processors

Idle Task Create free-running task
Memory Allocate Allocate memory section
Memory Copy Copy to and from memory section

Target Preferences (ccslinklib_tgtpref)

Target Preferences Configure model for Texas
Instruments processor

8-3

8 Block Reference

8-4

9

Blocks — Alphabetical List

C280x/C28x3x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on
C280x/C28x3x processor

Library ccslinklib_c280x in Embedded IDE Link CC

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C280x/C28x3x Hardware Interrupt block addresses this
problem by allowing asynchronous processing of interrupts triggered
by events managed by other blocks in the C280x/C28x3x DSP Chip
Support Library.

The following C280x/C28x3x blocks that can generate an interrupt for
asynchronous processing are available in Target Support Package TC2.

• C280x ADC

• C280x eCAN Receive

• C280x SCI Receive

• C280x SCI Transmit

• C280x SPI Receive

• C280x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

9-2

C280x/C28x3x Hardware Interrupt

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

9-3

C280x/C28x3x Hardware Interrupt

C
2

8
0

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/

C
o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T
(L

P
M

/W
D

)
TI

N
T0

(T
IM

E
R

0)
A

D
C

IN
T

(A
D

C
)

X
IN

T2
X

IN
T1

R
es

er
ve

d
S

E
Q

2I
N

T
(A

D
C

)
S

E
Q

1I
N

T
(A

D
C

)

2
R

es
er

ve
d

R
es

er
ve

d
E

P
W

M
6_

TZ
IN

T
(e

P
W

M
6)

E
P

W
M

5_
TZ

IN
T

(e
P

W
M

5)
E

P
W

M
4_

TZ
IN

T
(e

P
W

M
4)

E
P

W
M

3_
TZ

IN
T

(e
P

W
M

3)
E

P
W

M
2_

TZ
IN

T
(e

P
W

M
2)

E
PW

M
1_

TZ
IN

T
(e

P
W

M
1)

3
R

es
er

ve
d

R
es

er
ve

d
E

P
W

M
6_

IN
T

(e
P

W
M

6)
E

P
W

M
5_

IN
T

(e
P

W
M

5)
E

P
W

M
4_

IN
T

(e
P

W
M

4)
E

P
W

M
3_

IN
T

(e
P

W
M

3)
E

P
W

M
2_

IN
T

(e
P

W
M

2)
E

PW
M

1_
IN

T
(e

P
W

M
1)

4
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
E

C
A

P
4_

IN
T

(e
C

A
P

4)
E

C
A

P
3_

IN
T

(e
C

A
P

3)
E

C
AP

2_
IN

T
(e

C
A

P2
)

E
C

A
P

1_
IN

T
(e

C
A

P
1)

5
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
E

Q
E

P
2_

IN
T

(e
Q

E
P

2)
E

Q
E

P
1_

IN
T

(e
Q

E
P

1)

6
S

P
IT

X
IN

TD
(S

P
I-D

)
S

P
IR

X
IN

TD
(S

P
I-D

)
SP

IT
X

IN
TC

(S
P

I-C
)

S
P

IR
X

IN
TC

(S
P

I-C
)

SP
IT

X
IN

TB
(S

P
I-B

)
S

P
IR

X
IN

TB
(S

P
I-B

)
S

P
IT

X
IN

TA
(S

P
I-A

)
S

P
IR

X
IN

TA
(S

P
I-A

)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
I2

C
IN

T1
A

(I2
C

-A
)

I2
C

IN
T2

A
(I2

C
-A

)

9
E

C
A

N
1I

N
TB

(C
A

N
-B

)
E

C
A

N
0I

N
TB

(C
A

N
-B

)
E

C
A

N
1I

N
TA

(C
A

N
-A

)
E

C
A

N
0I

N
TA

(C
A

N
-A

)
S

C
IT

X
IN

TB
(S

C
I-B

)
S

C
IR

X
IN

TB
(S

C
I-B

)
S

C
IT

X
IN

TA
(S

C
I-A

)
S

C
IR

X
IN

TA
(S

C
I-A

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9-4

C280x/C28x3x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
suspend the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization, such that
a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

9-5

C280x/C28x3x Hardware Interrupt

See the table of C280x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-2
for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-2
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Select this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

References Detailed information about interrupt processing is in TMS320x280x
DSP System Control and Interrupts Reference Guide, Literature
Number SPRU712B, available at the Texas Instruments Web site.

9-6

C280x/C28x3x Hardware Interrupt

See Also The following links refer to block reference pages that require the
Target Support Package TC2 software.

C280x/C28x3x Software Interrupt Trigger,Idle Task

9-7

C281x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt

Library ccslinklib_c281x in Embedded IDE Link CC

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C281x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered
by events managed by other blocks in the C281x DSP Chip Support
Library.

The following C281x blocks that can generate an interrupt for
asynchronous processing are available from Target Support Package
TC2

• C281x ADC

• C281x CAP

• C281x eCAN Receive

• C281x Timer

• C281x SCI Receive

• C281x SCI Transmit

• C281x SPI Receive

• C281x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.

9-8

C281x Hardware Interrupt

Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

9-9

C281x Hardware Interrupt

C
2

8
1

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/

C
o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T
(L

PM
/W

D
)

TI
N

T0
(T

IM
E

R
0)

A
D

C
IN

T
(A

D
C

)
X

IN
T2

X
IN

T1
R

es
er

ve
d

P
D

P
IN

TB
(E

V-
B

)
P

D
P

IN
TA

(E
V-

A
)

2
R

es
er

ve
d

T1
O

FI
N

T
(E

V-
A

)
T1

U
FI

N
T

(E
V-

A
)

T1
C

IN
T

(E
V-

A
)

T1
P

IN
T

(E
V-

A
)

C
M

P
3I

N
T

(E
V-

A
)

C
M

P
2I

N
T

(E
V-

A
)

C
M

P
1I

N
T

(E
V-

A
)

3
R

es
er

ve
d

C
A

P
IN

T3
(E

V-
A

)
C

A
P

IN
T2

(E
V-

A
)

C
A

P
IN

T1
(E

V-
A

)
T2

O
FI

N
T

(E
V-

A
)

T2
U

FI
N

T
(E

V-
A

)
T2

C
IN

T
(E

V-
A

)
T2

P
IN

T
(E

V-
A

)

4
R

es
er

ve
d

T3
O

FI
N

T
(E

V-
B

)
T3

U
FI

N
T

(E
V-

B
)

T3
C

IN
T

(E
V-

B
)

T3
P

IN
T

(E
V-

B
)

C
M

P
6I

N
T

(E
V-

B
)

C
M

P
5I

N
T

(E
V-

B
)

C
M

P
4I

N
T

(E
V-

B
)

5
R

es
er

ve
d

C
A

P
IN

T6
(E

V-
B

)
C

A
P

IN
T5

(E
V-

B
)

C
A

P
IN

T4
(E

V-
B

)
T4

O
FI

N
T

(E
V-

B
)

T4
U

FI
N

T
(E

V-
B

)
T4

C
IN

T
(E

V-
B

)
T4

P
IN

T
(E

V-
B

)

6
R

es
er

ve
d

R
es

er
ve

d
M

X
IN

T
(M

cB
S

P
)

M
R

IN
T

(M
cB

S
P

)
R

es
er

ve
d

R
es

er
ve

d
S

P
IT

X
IN

TA
(S

P
I)

S
P

IR
X

IN
TA

(S
P

I)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
R

es
er

ve
d

R
es

er
ve

d
E

C
A

N
1I

N
T

(C
A

N
)

E
C

A
N

0I
N

T
(C

A
N

)
S

C
IT

X
IN

TB
(S

C
I-B

)
S

C
IR

X
IN

TB
(S

C
I-B

)
S

C
IT

XI
N

TA
(S

C
I-A

)
S

C
IR

XI
N

TA
(S

C
I-A

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9-10

C281x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority
value for each asynchronously triggered task must be less than 40 for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

CPU interrupt numbers
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

9-11

C281x Hardware Interrupt

See the table of C281x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

Simulink task prioritys
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-8
for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 9-8
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Use this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

References Detailed information interrupt processing is in TMS320x281x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRU078C, available at the Texas Instruments Web site.

9-12

C281x Hardware Interrupt

See Also The following links to block reference pages require that Target Support
Package TC2 is installed.

C281x Software Interrupt Trigger,C281x Timer, Idle Task

9-13

Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on C5xxx and
C6xxx processors

Library Cxxxx DSP Chip Support in Embedded IDE Link CC

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from the this block or a Task block connected to
this block.

Dialog
Box

Interrupt number(s)
Specify an array of interrupt numbers for the interrupts to install.
The following table provides the valid range for C5xxx and C6xxx
processors:

9-14

Hardware Interrupt

Processor Family Valid Interrupt Numbers

C5xxx 2, 3, 5-21, 23

C6xxx 4-15

The width of the block output signal corresponds to the number of
interrupt numbers specified here. Combined with the Simulink
task priorities that you enter and the preemption flag you
enter for each interrupt, these three values define how the code
and processor handle interrupts during asynchronous scheduler
operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink software
task priority specifies the Simulink priority of the downstream
blocks. Specify an array of priorities corresponding to the
interrupt numbers entered in Interrupt numbers.

Simulink task priority values are required to generate the proper
rate transition code (refer to Rate Transitions and Asynchronous
Blocks). The task priority values are also required to ensure
absolute time integrity when the asynchronous task needs to
obtain real time from its base rate or its caller. Typically, you
assign priorities for these asynchronous tasks that are higher
than the priorities assigned to periodic tasks.

Preemption flags preemptable – 1, non-preemptable – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of

9-15

Hardware Interrupt

the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

9-16

Idle Task

Purpose Create free-running task

Library Cxxxx DSP Chip Support in Embedded IDE Link CC

Description The Idle Task block, and the subsystem connected to it, specify one
or more functions to execute as background tasks. All tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base rate task.

Vectorized Output

The block output comprises a set of vectors—the task numbers
vector and the preemption flag or flags vector. Any preemption-flag
vector must be the same length as the number of tasks vector unless
the preemption flag vector has only one element. The value of the
preemption flag determines whether a given interrupt (and task) is
preemptible. Preemption overrides prioritization. A lower-priority
nonpreemptible task can preempt a higher-priority preemptible task.

When the preemption flag vector has one element, that element value
applies to all functions in the downstream subsystem as defined by the
task numbers in the task number vector. If the preemption flag vector
has the same number of elements as the task number vector, each task
defined in the task number vector has a preemption status defined by
the value of the corresponding element in the preemption flag vector.

9-17

Idle Task

Dialog
Box

Task number(s)
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2] to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed, the value
of the second element determines the order in which the second
function in the subsystem is executed, and so on.

9-18

Idle Task

For example, entering [2,3,1] in this field indicates that there
are three functions to be executed, and that the third function
is executed first, the first function is executed second, and the
second function is executed third. After all functions are executed,
the Idle Task block cycles back and repeats the execution of the
functions in the same order.

Preemption flag(s)
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Task number(s) contains more than one task, you can assign
different preemption flags to each task by entering a vector of
flag values, corresponding to the order of the tasks in Task
number(s). If Task number(s) contains more than one task, and
you enter only one flag value here, that status applies to all tasks.

In the default settings [0 1], the task with priority 1 in Task
number(s) is not preemptible, and the priority 2 task can be
preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Idle Task block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink software.

9-19

Memory Allocate

Purpose Allocate memory section

Library Cxxxx DSP Chip Support in Embedded IDE Link CC

Description On your C2xxx, C5xxx, or C6xxx processor, this block directs the TI
compiler to allocate memory for a new variable you specify. Parameters
in the block dialog box let you specify the variable name, the alignment
of the variable in memory, the data type of the variable, and other
features that fully define the memory required.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You
must ensure that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

The block does not have input or output ports. It only allocates a
memory location. You do not connect it to other blocks in your model.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

9-20

Memory Allocate

The following sections describe the contents of each pane in the dialog
box.

9-21

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable is
allocated in the generated code.

9-22

Memory Allocate

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, theMemory alignment boundary parameter appears so
you can specify the alignment. Use this parameter and Memory
alignment boundary when your processor requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter
the qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

9-23

Memory Allocate

Section Parameters

Parameters on this pane specify the section in memory to store the
variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the

9-24

Memory Allocate

standard memory sections or a custom section that you declare
elsewhere in your code.

Memory section
Identify a specific memory section to allocate the variable in
Variable name. Verify that the section has sufficient space
to store your variable. After you specify a memory section by
selecting Specify memory section and entering the section
name in Memory section, use Bind memory section to bind
the memory section to a location.

Bind memory section
After you specify a memory section by selecting Specify memory
section and entering the section name in Memory section,
use this parameter to bind the memory section to the location in
memory specified in Section start address. When you select
this, you enable the Section start address parameter.

The new memory section specified inMemory section is defined
when you check this parameter.

Note Do not use Bind memory section for existing memory
sections.

Section start address
Specify the address to which to bind the memory section. Enter
the address in decimal form or in hexadecimal with a conversion
to decimal as shown by the default value hex2dec('8000'). The
block does not verify the address—verify that the address exists
and can contain the memory section you entered in Memory
section.

See Also Memory Copy

9-25

Memory Copy

Purpose Copy to and from memory section

Library Cxxx DSP Chip Support in Embedded IDE Link CC

Description In generated code, this block copies variables or data from and to
processor memory as configured by the block parameters. Your model
can contain as many of these blocks as you require to manipulate
memory on your processor.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, rather than occurring for every read
and write operation.

With the custom source code options, the block enables you to add
custom ANSI C source code before and after each memory read and
write (copy) operation. You can use the custom code capability to lock
and unlock registers before and after accessing them. For example,
some processors have registers that you may need to unlock and
lock with EALLOW and EDIS macros before and after your program
accesses them.

If your processor or board supports quick direct memory access (QDMA)
the block provides a parameter to check that implements the QDMA
copy operation, and enables you to specify a function call that can
indicate that the QDMA copy is finished. Only the C621x, C64xx, and
C671x processor families support QDMA copy.

Block Operations

This block performs operations at three periods during program
execution—initialization, real-time operations, and termination. With
the options for setting memory initialization and termination, you

9-26

Memory Copy

control when and how the block initializes memory, copies to and
from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in all three periods
independently.

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.
This block does not require the Memory Allocate block to be in the
model.

In a simulation, this block does not perform any operation. The block
output is not defined.

Copy Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options— Select various parameters to control the copy process.

The dialog box images show many of the available parameters enabled.
Some parameters shown do not appear until you select one or more
other parameters. Some parameters are not shown in the figures, but
the text describes them and how to make them available.

9-27

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

9-28

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port— This source reads the data from the block input
port.

9-29

Memory Copy

• Specified address — This source reads the data at the
specified location in Specify address source and Address.

• Specified source code symbol — This source tells the
block to read the symbol (variable) you enter in Source code
symbol. When you select this copy from option, you enable the
Source code symbol parameter.

Note If you do not select the Input port option for Copy
from, change the Data type parameter setting from the
default Inherit from source to one of the data types on the
Data type list. If you do not make the change, you receive an
error message that the data type cannot be inherited because
the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses

9-30

Memory Copy

valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. The following
example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from source for
inheriting the data type from the block input port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable

9-31

Memory Copy

the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a positive integer.

The next two figures help explain the stride concept. In the first
figure you see data copied without any stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

9-32

Memory Copy

9-33

Memory Copy

9-34

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port— Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

• Specified address— Copies the data to the specified location
in Specify address source and Address.

9-35

Memory Copy

• Specified source code symbol— Tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and
uses valid syntax.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. This example
converts Ox2000 to decimal form.

8192 = hex2dec('2000');

9-36

Memory Copy

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option inherit from source for
inheriting the data type for the variable from the block input port.

Specify offset source
The block provides two sources for the offset—Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before
writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a positive
integer.

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in

9-37

Memory Copy

the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a
constant sample time. You can set Sample time to -1 to direct
the block to inherit the sample time from the input, if there is one,

9-38

Memory Copy

or the Simulink software model (when there are no input ports on
the block). Enter the sample time in seconds as you need.

9-39

Memory Copy

Options Parameters

9-40

Memory Copy

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you select this option, use the Set
memory value at termination and Specify initialization
value source parameters to set your desired value. Alternately,
you can tell the block to get the initial value from the block input.

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory. Enter any value that meets
your needs.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use in this field. Any real
value that meets your needs is acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use in this field. Any symbol that
meets your needs and is in the symbol table for the program is
acceptable. When you enter the symbol, the block does not verify
whether the symbol is a valid one. If it is not valid you get an
error when you try to compile, link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

9-41

Memory Copy

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol.

Bitwise operator
To use the initialization value as a mask, select one of the entries
on the following table from the Bitwise operator list to describe
how to apply the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

9-42

Memory Copy

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution—initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform any
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom ANSI C code before the
program writes to the specified memory location. When you select
this option, you enable the Custom code parameter where you
enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just before the memory write operation. Code you enter in this
field appears in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom ANSI C code immediately
after the program writes to the specified memory location. When
you select this option, you enable the Custom code parameter
where you enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just after the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

9-43

Memory Copy

Use QDMA for copy (if available)
For processors that support quick direct memory access (QDMA),
select this parameter to enable the QDMA operation and to access
the blocking mode parameter.

If you select this parameter, your source and destination data
types must be the same or the copy operation returns an error.
Also, the input and output stride values must be one.

Enable blocking mode
If you select the Use QDMA for copy parameter, select this
option to make the memory copy operations blocking processes.
With blocking enabled, other processing in the program waits
while the memory copy operation finishes.

See Also Memory Allocate

9-44

Target Preferences

Purpose Configure model for Texas Instruments processor

Library Target Preferences in Embedded IDE Link CC

Description Options on the block dialog box let you set features of code generation
for your custom C2xxx, F28xx, C5xxx, and C6xxx processor-based
board. Adding this block to your Simulink software model provides
access to the processor hardware settings you need to configure when
you generate a project from a Simulink software model or you generate
code from Real-Time Workshop software to run on a processor or board.

Any model that you use to generate a project or that you develop for
custom hardware must include this block. Simulink or Real-Time
Workshop software returns an error message if a target preferences
block is not present in your model when you try to generate projects
or code.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the processor preferences for the model. Simulink software returns
an error when your model does not include a Target Preferences block
or has more than one.

The processor and processor options you specify on this block are:

• Processor and board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

• Operating parameters for peripherals on c280x and c281x processors

Setting the options included in this dialog box results in identifying
your processor to Real-Time Workshop software, Embedded IDE Link
CC, and Simulink software. Setting the options also, configures the

9-45

Target Preferences

memory map for your processor. Both steps are essential for generating
code for any board that is custom or explicitly supported, such as the
C6711 DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box until
you add the block to a model. When you open the block dialog, the block
attempts to connect to your processor. It cannot make the connection
when the block is in the library and returns an error message.

Note If you do not have Texas Instruments’ Code Composer Studio
software installed, you cannot open this block.

Generating Code from Model Subsystems

Real-Time Workshop software provides the ability to generate code
from a selected subsystem in a model. To generate code for custom
C2xxx, C5xxx, or C6xxx processor-based hardware from a subsystem,
the subsystem model must include a Target Preferences block.

Dialog
Box

This reference page section contains the following subsections:

• “Board Info Pane” on page 9-48

• “Memory Pane” on page 9-52

• “Physical Memory Options” on page 9-54

• “Sections Pane” on page 9-58

• “DSP/BIOS Pane” on page 9-62

• “Peripherals Pane” on page 9-65

• “New Processor Dialog Box” on page 9-82

9-46

Target Preferences

Target Preferences block dialog boxes provide tabbed access to the
following panes with options you set for the processor and board:

• Board info— Select the processor, set the clock speed, and identify
the processor. In addition, Add new on this pane opens the New
Processor dialog box.

• Memory — Set the memory allocation and layout on the processor
(memory mapping).

9-47

Target Preferences

• Sections— Determine the arrangement and location of the sections
on the processor such as where to put the DSP/BIOS and compiler
information.

• DSP/BIOS— (Optional) Specify how to configure tasking features
of DSP/BIOS.

• Peripherals — (Only for C2xxx family processors) Specify how to
configure the peripherals provided by C2xxx processors, such as the
SPI_A, SPI_B, GPIO, or eCAP peripherals.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board type
Lets you enter the type of board you are processoring with the
model. You can enter Custom to support any board that uses one
of the processors on the Processor list, or enter the name of one
of the supported boards, such as C6711DSK. If you are using one
of the explicitly supported boards, choose the Target Preferences
block for that board and this field shows the proper board type.

Processor
Lets you select the type of processor to use from the list. The
processor you select determines the contents and setting for
options on the Memory and Sections panes in this dialog box.
This selection controls the Operating system option. Selecting
a processor that supports DSP/BIOS, such as a C6416, enables
Operating system. If your processor does not support DSP/BIOS,
such as the C2xxx processors, Operating system is disabled.

Add new
Clicking Add new opens a new dialog box where you specify
configuration information for a processor that is not on the
Processor list. Adding the new processor puts the new processor
on the Processor list for all Target Preferences blocks, not just
this one. The new processor and configuration become part of

9-48

Target Preferences

the available processors for all models that include a Target
Preferences block.

For details about the New Processor dialog box, refer to New
Processor Dialog Box.

Edit
Edit the configuration for the processor you select on the
Processor list.

Delete
Delete a processor that you added to the Processor list. You
cannot delete processors that you did not add.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your processor. When
you enter a value, you are not changing the CPU clock rate. You
are reporting the actual rate. If the value you enter does not
match the rate on the processor, your model’s real-time results
may be wrong, and the code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6xxx processors from Simulink
software models, you may encounter the software timer. The
timer is invoked automatically to handle and create interrupts to
drive your model when either of the following conditions occur:

• Your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your processor. You can change the

9-49

Target Preferences

rate with the DIP switches on the board or from one of the Texas
Instruments software utilities.

For the timer software to calculate the interrupts correctly,
Embedded IDE Link CC needs to know the actual clock rate of
your processor as you configured it. CPU clock speed lets you tell
the timer the rate at which your processor CPU runs, which is the
rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Thus, you must report the correct clock rate, or the interrupts
come at the wrong times and the results are incorrect.

Simulator
Select this option when you are processoring a simulator rather
than a hardware processor. You must select Simulator to
processor your code to a C6xxx simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

9-50

Target Preferences

Operating System
Specify whether to use a real-time operating system (RTOS)
with your model. Choose DSP/BIOS from the list to add the
DSP/BIOS RTOS features to your project. Select None to disable
the DSP/BIOS features.

You must have Target Support Package TC6 software installed to
access this option.

Board Custom Code
Entries in this group specify the locations of custom source files or
libraries or other functions. Options provide access to text areas
where you enter files and file paths:

• Source files — Enter the full paths to source code files to
use with this processor. By default there are no entries in this
parameter.

• Include paths— If you require additional files on your path,
add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — These entries identify specific libraries that
the processor requires. They appear on the list by default if
required. Add more by entering the full path to the library with
the library file in the text area. No additional libraries appear
here in the default configuration.

• Initialize functions— If your project requires an initialize
function, enter it in this field. By default, this parameter is
empty.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

9-51

Target Preferences

Note When you enter a file path, library, or function, the block
does not verify that the path or function exists or is valid. Invalid
or incorrect entries in these fields may cause errors during code
generation.

To enter a path to a file, library, or other custom code, use the
following string in the path to refer to the CCS installation
directory.

$(install_dir)

Enter new paths or files (custom code items) one entry per line.
Include the full path to the file for libraries and source code.
Board custom code options do not support functions that use
return arguments or values. Only functions of type void fname
void are valid as entries in these parameters.

Board name
Contains a list of all the boards defined in CCS Setup. From the
list of available boards, select the one that you are processoring.

Processor name
Lists the processors on the board you selected for processoring in
Board name. In most cases, only one name appears because the
board has one processor. In the multiprocessor case, select the
processor by name from the list.

Memory Pane

When you processor any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific Target
Preferences blocks set the default memory map.

9-52

Target Preferences

TheMemory pane contains memory options for three kinds of memory:

• Physical Memory— Specifies the processor and board memory map

• Heap — Specifies whether you use a heap and determines the size
in words

• Cache Configuration — Select a cache configuration where
available, such as L2 cache, and select one of the corresponding
configuration options, such as 32kb.

9-53

Target Preferences

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for CCS.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, Target Preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured Target Preferences blocks shows the memory
segments available on the board, but external to the processor. Target
Preferences blocks set default starting addresses, lengths, and contents
of the default memory segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on C670x processors provide IPRAM and
IDRAM memory segments by default.

• C671x processors provide IRAM memory segment by default.

Name
When you highlight an entry on the Memory bank list list, the
name of the entry appears in this field. To change the name of the
existing memory segment, select it on Memory bank list and
then type the new name in this field.

Note You cannot change the names of default processor memory
segments. You can change the attributes of memory segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

9-54

Target Preferences

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes, one word.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
Target Preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

• Code & Data— Allow code and data to be stored in the memory
segment in Name. When you add a new memory segment, this
is the default setting for the contents of the new element.

You may add or use as many segments of each type as you
need, within the limits of the memory on your processor. Every
processor must have sections that can hold code and data.

9-55

Target Preferences

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Memory bank list list.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply,
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on theMemory bank list list
and click Remove to delete the segment.

Create Heap

Note To enable theHeap option, select DSP/BIOS for Operating
system on the Board Info pane.

If your processor supports using a heap, as the C6711 does,
selecting this option enables creating the heap, and enables the
Heap size option. Create heap is not available on processors
that either do not provide a heap or do not allow you to configure
the heap.

Using this option you can create a heap in any memory segment
on theMemory bank list list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

9-56

Target Preferences

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You
can enter the value directly in hexadecimal format as well.
Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Use this option, which you enable by selecting Define label, to
provide the label for the heap. Any combination of characters
is accepted for the label, except reserved characters in C/C++
compilers.

Note When you enter a label, the block does not verify that the
label is valid. An invalid label in this field may cause errors
during code generation.

Cache Configuration
C621x, C671x, and C641x processors support an L2 cache memory
structure that you can configure as SRAM and partial cache.
Both the data memory and the program share this second-level
memory. C620x DSPs do not support L2 cache memory and
this option is not available when you choose one of the C620x
processors as your processor.

If your processor supports the two-level memory scheme, this
option enables the L2 cache on the processor.

Some processors support code base memory organization. For
example, a part of internal memory can be configure as code.

9-57

Target Preferences

Cache level lets you select one of the available cache levels to
configure by selecting one of its configurations. For example, you
can select L2 cache level and choose one of its configurations,
such as 32kB.

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments—sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler and some
can be custom sections.

For more information about program sections and objects, refer to the
Code Composer Studio online help.

9-58

Target Preferences

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

9-59

Target Preferences

String
Section
List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
processor program can read

.pinit Compiler Load allocation of the table of global
object constructors section

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in
the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

9-60

Target Preferences

String
Section
List Description of the Section Contents

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Default Sections
When you highlight a section on the list, Description show a
brief description of the section. Also,Placement shows you where
the section is presently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the
segment.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS
sections lists, you add the new sections to this list. Initially, the

9-61

Target Preferences

Custom sections list contains no fixed entries, but instead, only
a placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then, replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Selecting DSP/BIOS for Operating system on the Board Info pane
enables this pane.

To enable the DSP/BIOS pane, you must have installed Target Support
Package TC6 and you must select DSP/BIOS from the Operating
system list on the Board Info pane.

Options on this pane let you specify how to configure various modules of
DSP/BIOS.

9-62

Target Preferences

When you set the Operating system option to None, you disable the
options in this pane.

For more information about tasks, refer to the Code Composer Studio
online help.

Within this pane, you configure the options for DSP/BIOS tasks.

9-63

Target Preferences

DSP/BIOS sections/objects
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected
DSP/BIOS sections list entry.

Placement
Shows where the selected DSP/BIOS sections/objects list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors and
changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the DSP/BIOS
Object Placement list. All DSP/BIOS objects use the same
memory segment. You cannot select the location for individual
objects.

Data object placement
Specify where to place new data objects in memory.

Code object placement
Specify where to place new code objects in memory.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up to
the limits for the processor. Set the stack size so that tasks do not

9-64

Target Preferences

use more memory than you allocate. While any task can use more
memory than the stack includes, exceeding the stack memory size
might cause the task to write into other memory or data areas,
possibly causing unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers IDRAM for locating the stack in memory. The
Memory pane provides more options for the physical memory on
the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, MEM_NULL is the only valid stack location in memory.
You must allocate system heap storage to use this option. Specify
the system heap configuration on the Memory pane.

Peripherals Pane

When you choose a C2000 processor from the Processor list on the
Board info pane, this tabbed pane appears to let you configure
peripheral settings and pin assignments.

You must have Target Support Package TC2 installed to enable this
pane when you select a C2000 processor.

To set the attributes for a peripheral, select the peripheral from the
Peripherals list and then set the attribute options on the right side.

The following table shows all of the peripherals provided on the
Peripherals list. Some of the peripherals may not be available on
some C2000 processors.

9-65

Target Preferences

Peripheral
Name

Description

ADC Report the settings for the analog-to-digital converter
SCI_A Report or set the serial communications interface

parameters for module A
SCI_B Report or set the serial communications interface

parameters for module B
SPI_A Report or set the serial peripheral interface parameters

for module A
SPI_B Report or set the serial peripheral interface parameters

for module B
SPI_C Report or set the serial peripheral interface parameters

for module C
SPI_D Report or set the serial peripheral interface parameters

for module D
eCAN_A Report or set the eCAN parameters for module A
eCAN_B Report or set the eCAN parameters for module B
eCAP Report or assign eCAP module pins to general purpose

IO pins if necessary
ePWM Report or assign ePWM pins to general purpose IO pin

if necessary

9-66

Target Preferences

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. For more information about configuring these scalers, refer
to “Configuring ADC Parameters for Acquisition Window Width”
in the Target Support Package TC2 documentation (available if
you have installed Target Support Package TC2).

9-67

Target Preferences

You can set the following parameters for the ADC clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling or acquisition period. The higher the value,
the wider is the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

CPS
After the HSPCLK speed is divided by the ADCLKPS value,
the result is further divided by 2 if the CPS parameter is
set to 1, which is the default.

External reference
By default, an internally generated bandgap voltage
reference is selected to supply the ADC logic. However,
depending on application requirements, the ADC logic may
be supplied by an external voltage reference. Choose True
to use an external voltage reference.

Offset
The 280x ADC supports offset correction via a 9-bit value
that is added or subtracted before the results are available
in the ADC result registers. Timing for results is not
affected. The default value is 0.

SCI_A
The serial communications interface parameters you can set for
module A. These parameters are:

Baud rate
Baud rate for transmitting and receiving data. Select from
115200 (the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 110.

9-68

Target Preferences

BlockingMode
If this option is set to True, system waits until data is
available to read (when data length is reached). If this
option is set to False, system checks FIFO periodically (in
polling mode) to see if there is any data to read. If data is
present, it reads and outputs the contents. If no data is
present, it outputs the last value and continues.

Character length bits
Length in bits of each transmitted or received character,
set to 8 bits.

Communication mode
Select Raw_data or Protocol mode. Raw data is
unformatted and sent whenever the transmitting side is
ready to send, whether the receiving side is ready or not.
No deadlock condition can occur because there is no wait
state. Data transmission is asynchronous. With this mode,
it is possible the receiving side could miss data, but if the
data is noncritical, using raw data mode can avoid blocking
any processes.

When you select protocol mode, some handshaking between
host and processor occurs. The transmitting side sends
$SND to indicate it is ready to transmit. The receiving
side sends back $RDY to indicate it is ready to receive.
The transmitting side then sends data and, when the
transmission is completed, it sends a checksum.

Advantages to using protocol mode include:

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by processor

• Ensures time consistency; each side waits for its turn to
send or receive

9-69

Target Preferences

Note Deadlocks can occur if one SCI Transmit block tries
to communicate with more than one SCI Receive block on
different COM ports when both are blocking (using protocol
mode). Deadlocks cannot occur on the same COM port.

Data byte order
Select Little Endian or Big Endian.

Data swap width
Select 8-bits or 16-bits.

Enable Loopback
Select this parameter to enable the loopback function for
self-test and diagnostic purposes only. When this function
is enabled, a C28x DSP’s Tx pin is internally connected to
its Rx pin and can transmit data from its output port to its
input port to check the integrity of the transmission.

Number of stop bits
Select whether to use 1 or 2 stop bits.

Parity mode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes, such as 00110010. Even sets the parity bit to one if
you have an even number of ones in your bytes, such as
00110011.

Suspension mode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the suspension mode determines whether to
perform the program instruction. Available options are
Hard_abort, Soft_abort, and Free_run. Hard_abort stops
the program immediately. Soft_abort stops when the

9-70

Target Preferences

current receive/transmit sequence is complete. Free_run
continues running regardless of the breakpoint.

SCI_B
The serial communications interface parameters you can set for
module B. These parameters are:

Baud rate
Baud rate for transmitting and receiving data. Select from
115200(the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 110.

Blocking mode
When you set this option to True, the system waits until
data is available to read (when data length is reached).
If this option is set to False, the system checks the FIFO
periodically (in polling mode) to see if there is any data to
read. If data is present, it reads and outputs the contents.
If no data is present, the system outputs the last value and
continues.

Character length bits
Length in bits of each transmitted/received character, set
to 8 bits.

Communication mode
Select Raw_data or Protocol mode. Raw data is
unformatted and sent whenever the transmitting side is
ready to send, whether the receiving side is ready or not.
No deadlock condition can occur because there is no wait
state. Data transmission is asynchronous. With this mode,
it is possible the receiving side could miss data, but if the
data is noncritical, using raw data mode can avoid blocking
any processes.

When you specify protocol mode, some handshaking
between host and processor occurs. The transmitting side
sends $SND to indicate that it is ready to transmit. The

9-71

Target Preferences

receiving side sends back $RDY to indicate that it is ready
to receive. The transmitting side then sends data and, when
the transmission is completed, it sends a checksum.

Advantages to using protocol mode include:

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by processor

• Ensures time consistency; each side waits for its turn to
send or receive

Note Deadlocks can occur if one SCI Transmit block tries
to communicate with more than one SCI Receive block on
different COM ports when both are blocking (using protocol
mode). Deadlocks cannot occur on the same COM port.

Data byte order
Select Little Endian or Big Endian.

Data swap width
Select 8-bits or 16-bits.

Enable Loopback
Select this to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, the
Tx pin on a C28x DSP is internally connected to its Rx pin
and can transmit data from its output port to its input port
to check the integrity of the transmission.

Number of stop bits
Select whether to use 1 or 2 stop bits.

Parity mode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the

9-72

Target Preferences

parity bit to one if you have an odd number of ones in your
bytes, such as 00110010. Even sets the parity bit to one if
you have an even number of ones in your bytes, such as
00110011.

Rx pin assignment
Assigns the SCI receive something to a GPIO pin. Choices
are None (default), GPI011, GPI015, GPI019, or GPI023.

Tx pin assignment
Assigns the SCI transmit something to a GPIO pin. Choices
are None (default), GPI09, GPI014, GPI018, or GPI022.

Suspension mode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SPI_A
The serial peripheral interface parameters you can set for the A
module. These parameters are:

Baud rate factor
Factor to customize the baud rate, where the CPU rate is
the processor’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

Clock phase
Select No_delay or Delay_half_cycle.

Clock polarity
Select Rising_edge or Falling_edge.

9-73

Target Preferences

Data bits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

Enable Loopback
Select this option to enable the loopback function for
self-test and diagnostic purposes only. When this function is
enabled, the Tx pin on a C28x DSP is internally connected
to its Rx pin and can transmit data from its output port to
its input port to check the integrity of the transmission.

Enable FIFO
Set true or false.

FIFO interrupt level (Rx)
Set level for receive FIFO interrupt. Select 0 through 16.

FIFO interrupt level (Tx)
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFO transmit delay
Enter FIFO transmit delay (in processor clock cycles) to
pause between data transmissions. Enter an integer.

Mode
Set to Master or Slave.

Suspension mode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

9-74

Target Preferences

SPI_B
The serial peripheral interface parameters you can set for the B
module. These parameters are:

Baud rate factor
Factor to customize the baud rate, where the CPU rate is
the processor’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

Clock phase
Select No_delay or Delay_half_cycle.

Clock polarity
Select Rising_edge or Falling_edge.

Data bits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

Enable Loopback
Select this option to enable the loopback function for
self-test and diagnostic purposes only. When this function is
enabled, the Tx pin on a C28x DSP is internally connected
to its Rx pin and can transmit data from its output port to
its input port to check the integrity of the transmission.

Enable FIFO
Set true or false.

FIFO interrupt level (Rx)
Set level for receive FIFO interrupt. Select 0 through 16.

FIFO interrupt level (Tx)
Set level for transmit FIFO interrupt. Select 0 through 16.

9-75

Target Preferences

FIFO transmit delay
Enter FIFO transmit delay (in processor clock cycles) to
pause between data transmissions. Enter an integer.

Mode
Set to Master or Slave.

CLK pin assignment
Assigns the SPI something (CLK) to a GPIO pin. Choices
are None (default), GPI014, or GPI026.

SIMO pin assignment
Assigns the SPI something (SIMO) to a GPIO pin. Choices
are None (default), GPI012, or GPI024.

SOMI pin assignment
Assigns the SPI something (SOMI) to a GPIO pin. Choices
are None (default), GPI013, or GPI025.

STE pin assignment
Assigns the SPI something (STE) to a GPIO pin. Choices
areNone (default), GPI015, or GPI027.

Suspension Mode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SPI_C
Parameters for the SPI_C module include all the parameters for
the SPI_A module.

9-76

Target Preferences

SPI_D
Parameters for the SPI_D module include all the parameters for
the SPI_A module.

Qualification type for GPIO[pin#]
Each pin selected for input offers three signal qualification types:

• Sync to SYSCLKOUT— This setting is the default for all pins
at reset. Using this qualification type, the input signal is
synchronized to the system clock SYSCLKOUT. The following
figure shows the input signal measured on each tick of the
system clock, and the resulting output from the qualifier.

• Qualification using 3 samples — This setting requires
three consecutive cycles of the same value for the output value
to change. The following figure shows that, in the third cycle,
the GPIO value changes to 0, but the qualifier output is still 1
because it waits for three consecutive cycles of the same GPIO
value. The next three cycles all have a value of 0, and the
output from the qualifier changes to 0 immediately after the
third consecutive value is received.

9-77

Target Preferences

• Qualification using 6 samples— This setting requires six
consecutive cycles of the same GPIO input value for the output
from the qualifier to change. In the following figure, the glitch
A has no effect on the output signal. When the glitch occurs,
the counting begins, but the next measurement is low again, so
the count is ignored. The output signal does not change until
six consecutive samples of the high signal are measured.

A qualification sampling period prescaler in the Target
Preferences block affects the preceding settings. For an illustrated
explanation, refer to the entry Qualification sampling period
prescaler.

Qualification sampling period prescaler
Visible only when an appropriate setting for Qualification
type for GPIO [pin#] is selected. The qualification sampling
period prescaler, with possible values of 0 to 255, calculates
the frequency of the qualification samples or the number of

9-78

Target Preferences

system clock ticks per sample. The formula for calculating the
qualification sampling frequency is:

SYSCLKOUT
escaler2 * Pr

with the exception of zero. When Qualification sampling
period prescaler=0, a sample is taken every SYSCLKOUT clock
tick. For example, a prescale setting of 0 means that a sample is
taken on each SYSCLKOUT tick.

The following figure shows the SYSCLKOUT ticks, a sample
taken every clock tick, and the Qualification type set
to Qualification using 3 samples. In this case, the
Qualification sampling period prescaler=0:

In the next figure Qualification sampling period prescaler=1.
A sample is taken every two clock ticks, and the Qualification
type is set to Qualification using 3 samples. The output
signal changes much later than if Qualification sampling
period prescaler=0.

In the following figure, Qualification sampling period
prescaler=2. Thus , a sample is taken every four clock ticks,
and the Qualification type is set to Qualification using 3
samples.

9-79

Target Preferences

eCAN_A
For more help on setting the timing parameters for the eCAN
modules, refer to Configuring Timing Parameters for CAN Blocks.
You can set the following parameters for the eCAN module:

Baud rate prescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

Enhanced CAN mode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Selecting False enables only standard
mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only_falling_edges and
Both_falling_and_rising_edges.

9-80

Target Preferences

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

Self test mode
If this parameter is set to True, the eCAN module goes to
loopback mode, where a “dummy” acknowledge message is
sent back without needing an acknowledge bit. The default
is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
Baud rate prescaler, determines the length of a bit on the
eCAN bus. Valid values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2, which, with TSEG1 and
Baud rate prescaler, determines the length of a bit on the
eCAN bus. Valid values for TSEG2 are from 1 through 8.

eCAN_B
The parameters you can set for the eCAN_B module include all the
parameters for the eCAN_A module plus the following parameters
which apply only when you use the eCAN_B module:

Pin assignment (Rx)
Assigns the CAN receive pin to use with the eCAN_B module.
Possible values are GPIO10, GPIO13, GPIO17, and GPIO21.

Pin assignment (Tx)
Assigns the CAN transmit pin to use with the eCAN_B
module. Possible values are GPIO8, GPIO12, GPIO16, and
GPIO20.

eCAP
Assigns eCAP pins to GPIO pins if required.

9-81

Target Preferences

ECAP1 pin assignment
Select an option from the list—None, GPIO5, or GPIO24.

ECAP2 pin assignment
Select an option from the list—None, GPIO7, or GPIO25.

ECAP3 pin assignment
Select an option from the list—None, GPIO9, or GPIO26.

ECAP4 pin assignment
Select an option from the list—None, GPIO11, or GPIO27.

ePWM
Assigns ePWM signals to GPIO pins, if required.

SYNCI pin assignment
Assigns the ePWM external sync pulse input (SYNCI) to
a GPIO pin. Choices are None (the default), GPIO6, and
GPIO32.

SYNCO pin assignment
Assigns the ePWM external sync pulse output (SYNCO)
to a GPIO pin. Choices are None (the default), GPIO6, and
GPIO33.

TZ5 pin assignment
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices
are None (the default), GPIO16, and GPIO28.

TZ6 pin assignment
Assigns the trip-zone input 6(TZ6) to a GPIO pin. Choices
are None (the default), GPIO17, and GPIO29.

New Processor Dialog Box

When you click Add new on the General pane, you open this new
dialog box to add a new processor to the list of supported processors.

The first time you click Save to add a new processor definition to
the list of supported processors, a dialog box opens that directs you
to select a destination folder for the saved processor definitions file
customChipInfo.dat. You must select a directory to which you have

9-82

Target Preferences

write access. The location you specify becomes part of your MATLAB
preferences. Future processors that you add become entries in the file
customChipInfo.dat.

To add a new processor, you must enter values for the following
parameters:

• Name

Provide a name to identify your new processor. Any valid C string
works here. The name you enter in this field appears on the list of
processors after you add the new processor.

• Processor Class

Provide the class string that identifies your processor family, such as
62xx or 67xx.

• CPU clock

Enter the clock speed of the processor on your processor in MHz.
When you enter a value, you are not setting the CPU clock rate on
the processor. You are reporting the rate. If the value you enter does
not match the rate on the processor, your model’s real-time results
may be wrong, and code profiling results are not correct.

Setting CPU clock to the actual board rate allows the code you
generate to run correctly according to the actual clock rate of the
hardware.

• Define internal memory banks (one or more memory banks in the
processor memory)

Use the options to define the way the processor uses internal memory
for code and data.

• Define default sections (one or more default sections)

Set values for the options to define the default sections in memory.

9-83

Target Preferences

If you do not provide an entry for each of these parameters, Embedded
IDE Link CC returns an error message and does not create the new
processor entry.

9-84

Target Preferences

9-85

Target Preferences

General
Name

Provide a name to identify your new processor. You can use any
valid C string value in this field. The name you enter in this field
appears on the list of processors after you add the new processor.

Processor Class
Identifies the class of the new processor. Your new processor must
be a member of a family of processors that Embedded IDE Link
CC supports. For example, you can add a new C67xx processor
because the product supports the C6700 processor family.

You cannot add a new processor class to support your new
processor.

Generally, processors in a family share common design elements
such as interrupt architecture and clock. They may have different
memory maps. By selecting the processor class, you identify the
common features of the processor family. The parameters in
Define internal memory banks and Define default sections
enable you to specify the memory mapping for your new processor.

For example, to add a new C2811 processor, enter the string 28xx.
The following table lists the processor class string for supported
processor families.

Processor Family Processor Class String

C62xx 62xx where xx designates the
processor, such as C6203.

C64xx 64xx where xx designates the
processor, such as C6412. Use
645x for the TCI6482.

C67xx 67xx where xx designates the
processor, such as C6722.

9-86

Target Preferences

Processor Family Processor Class String

DM64x and DM64xx 64xx where xx designates the
processor, such as DM6433 or
DM643.

C55xx 55xx where xx designates the
processor, such as C5502. For
C5503, C5507, and C5509
processors, use 55xx.

C28xx, F28xx, R28xx, F28xxx 28xx where xx designates the
processor, such as C2812. For
F283xx processors, use 2833x.
For F280xx processors, use
280x.

CPU clock
Provide a name to identify your new processor. You can use any
valid C string value in this field. The name you enter in this field
appears on the list of processors after you add the new processor.

Enter the clock speed of the processor in MHz. When you enter
a value, you are not setting the CPU clock rate on the processor.
You are reporting the rate. If the value you enter does not match
the rate on the processor, your model’s real-time results may be
wrong, and code profiling results are not correct.

Setting CPU clock to the actual board rate allows the generated
code to run correctly according to the actual clock rate of the
hardware.

Compiler switch
Identifies the processor family of the new processor to the
compiler. Successful compilation requires this switch. The string
depends on the processor family or class. For example, to set
the compiler switch for a new C5509 processor, enter -ml. The
following table shows the compiler switch string for supported
processor families.

9-87

Target Preferences

Processor Family Compiler Switch String

C62xx None
C64xx None
C67xx None
DM64x and DM64xx None
C55xx -ml

C28xx, F28xx, R28xx, F28xxx -ml

Code generation hook
This string specifies a prefix to add when the code generation
process calls certain hook functions. The hook allows the code
to call into handling functions that are specific to the processor
selected. The following table shows the Code Generation hook
string for supported processor families.

Processor Family Code Generation Hook
String

C62xx C6000

C64xx C6000

C67xx C6000

DM64x and DM64xx C6000

C55xx C5000

C28xx, F28xx, R28xx, F28xxx C2000

Here is an example of using the code generation hook when
you begin to generate a project from a model intended for the
TMS320C6000 processor. At the start of the code generation
process, the process calls C6000_validateModelEntry.m to
validate the model settings for the processor. The C6000 prefix is
the code generation hook.

9-88

Target Preferences

Define internal memory banks (one or more memory banks)
Parameters in this group configure the memory map for the new
processor.

Define default sections (one or more default sections)
Parameters in this group configure the default sections for your
new processor.

Define internal memory banks
Name

To add a new physical memory segment to the internal memory
banks list, click Add, replace the temporary label in Name with
the one to use, and press Return. Your new segment appears
on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum

9-89

Target Preferences

addressable data units (MADUs). For the C6000 processor family,
for example, the MADU is 8 bytes, one word.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
Target Preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

• Code and Data — Allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this setting is the default for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the list. In Name, change the
temporary name NEWMEM1 by entering the new segment name.
Entering the new name, or clicking OK updates the temporary
name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove from the list, and click
Remove to delete the segment.

9-90

Target Preferences

Define cache configuration
Options

Enter the label for each option of the selected cache configuration,
one label on each line, such as 0kb, 16kb, 32kb and so on.

Add
Click Add to add a new cache configuration to the list. When you
click Add, the new cache label appears on the list.

Remove
This option lets you remove a cache configuration from the cache
list. Select the configuration to remove from the list, and click
Remove to delete the cache.

Cache configurations and related options are defined as symbols
to the project generator component. Cache options for new
processors are not labeled until you add the labels.

Label
Enter your label for the heap in the Label option. Entering the
label updates the label of the selected configuration.

Define Default Sections
Options in this region let you specify where various program sections
should go in memory and the contents and label for each section. You
can add text to describe each section. Program sections are distinct from
memory segments—sections are portions of the executable code stored
in contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

Label
The name of the section corresponds to the symbolic name
recognized by the linker program used with the respective
processor.

Contents
Contents provides the information about the native of the
program section. As the processor type for the Target Preferences

9-91

Target Preferences

block changes, the kinds of information you store in listed sections
may change. Generally, the Contents list contains these strings:

• Code— Allow code to be stored in the section in Name.

• Data— Allow data to be stored in the section in Name.

• Code and Data — Allow code and data to be stored in the
section in Name. When you add a new section, this setting is
the default for the contents.

You may add or use as many sections of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new section to the list. When you click Add,
the new section appears on the list.

Remove
This option lets you remove a section from the section list. Select
the section to remove from the list, and click Remove to delete
the section.

Sections and related options are defined as symbols to the project
generator component. Section options for new processors are not
labeled until you add the labels.

Processor Custom Code
The list on the left side of the pane shows the kinds of custom code you
can specify for your processor. Each time you use your custom processor
as defined in this dialog box, the custom code you enter here applies.
You can enter custom code in the categories in the following table.

Custom Code Entry Description

Source files Enter the full paths to source code files to use
with this processor. By default there are no
entries in this parameter. Enter each source
file on a new line.

9-92

Target Preferences

Custom Code Entry Description

Include paths If you require additional header files on
your path, add them by typing the path into
the text area, one file per line. The default
setting does not include additional paths.

Libraries (Little
Endian)

These entries identify specific little endian
libraries that the processor requires. Add
more as you require by entering the full path
to the library with the library file in the
text area. Enter one library per line. No
additional libraries appear in the default
configuration.

Libraries (Big
Endian)

These entries identify specific big endian
libraries that the processor requires. Add
more as you require by entering the full path
to the library with the library file in the text
area. No additional libraries appear in the
default configuration. Enter one library per
line.

Preprocessor
symbols

Enter any preprocessor symbols that the
new processor requires for operation and
compilation. No preprocessor symbols appear
in the default configuration. Add the required
symbols one symbol per line.

You can use two types of tokens when you specify custom code paths:

• $(Install_dir) — Refers to the installation directory of Code
Composer Studio. One example of this token is

$(Install_dir) \c6000\csl\lib\csl6201.lib

• $(MATLAB_ROOT) — Refers to the directory where you installed
MATLAB.

9-93

Target Preferences

9-94

10

Embedded IDE Link CC
Configuration Parameters

10 Embedded IDE Link™ CC Configuration Parameters

Embedded IDE Link CC Pane

In this section...

“Embedded IDE Link CC Overview” on page 10-4
“Export IDE link handle to base workspace” on page 10-5
“IDE link handle name” on page 10-7
“Profile real-time execution” on page 10-8
“Profile by” on page 10-10
“Number of profiling samples to collect” on page 10-12
“Inline run-time library functions” on page 10-14
“Project options” on page 10-16
“Compiler options string” on page 10-18
“Linker options string” on page 10-20

10-2

Embedded IDE Link CC Pane

In this section...

“System stack size (MAUs)” on page 10-22
“Build action” on page 10-23
“Interrupt overrun notification method” on page 10-26
“Interrupt overrun notification function” on page 10-28
“PIL block action” on page 10-29
“Maximum time allowed to build project (s)” on page 10-31
“Maximum time to complete IDE operations (s)” on page 10-33

10-3

10 Embedded IDE Link™ CC Configuration Parameters

Embedded IDE Link CC Overview
Options on this pane configure the generated projects and code for Texas
Instruments processors. They also enable PIL block generation and provide
real-time task execution and stack use profiling.

10-4

Embedded IDE Link CC Pane

Export IDE link handle to base workspace
Directs the software to export the ticcs object to your MATLAB workspace.

Settings
Default: On

On
Directs the build process to export the ticcs object created to your
MATLAB workspace. The new object appears in the workspace browser.
Selecting this option enables the IDE link handle name option.

Off
prevents the build process from exporting the ticcs object to your
MATLAB software workspace.

Dependency
This parameter enables IDE link handle name.

Command-Line Information

Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency No impact
Safety precaution No impact

10-5

10 Embedded IDE Link™ CC Configuration Parameters

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-6

Embedded IDE Link CC Pane

IDE link handle name
specifies the name of the ticcs object that the build process creates.

Settings
Default: CCS_Obj

• Enter any valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the ticcs object.

• The handle name is case sensitive.

Dependency
This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: CCS_Obj

Recommended Settings

Application Setting

Debugging Enter any valid C program variable name,
without spaces

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-7

10 Embedded IDE Link™ CC Configuration Parameters

Profile real-time execution
enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect and Profile
by.

Selecting this parameter disables Export ID link handle to base
workspace.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On

10-8

Embedded IDE Link CC Pane

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

For more information about using profiling, refer to profile, and “Real-Time
Execution Profiling” on page 4-11.

10-9

10 Embedded IDE Link™ CC Configuration Parameters

Profile by
Defines which execution profiling technique to use.

Settings
Default: Task

Task
Profiles model execution by the tasks in the model.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Real-time execution profiling enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

For more information about PIL, refer to Using Processor in the Loop.

10-10

Embedded IDE Link CC Pane

For more information about enabling profiling, refer to profile, and
“Real-Time Execution Profiling” on page 4-11

10-11

10 Embedded IDE Link™ CC Configuration Parameters

Number of profiling samples to collect
Specifies the number of profiling samples to collect. Collection stops when
the buffer for profiling data is full.

Settings
Default: 100

Minimum: 1

Maximum: Buffer capacity in samples

Tips

• Collecting profiling data on a simulator may take a very long time.

• Data collection stops after collecting the specified number of samples. The
application and processor continue to run.

Dependencies
This parameter is enabled by Profile real-time task execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

Recommended Settings

Application Setting

Debugging 100
Traceability No impact
Efficiency No impact
Safety precaution No impact

10-12

Embedded IDE Link CC Pane

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-13

10 Embedded IDE Link™ CC Configuration Parameters

Inline run-time library functions
Marks run-time library functions generated by the Signal Processing Toolbox
and Video and Image Processing Blockset™ block algorithms. These functions
as marked with the inline keyword.

Settings
Default: On

On
Adds the keyword inline to each instance of an algorithm generated
from blocks in the Signal Processing Blockset software and Video and
Image Processing Blockset software.

Off
Does not mark the algorithms with the keyword.

Tips
The following list shows cases where inlining run-time library functions may
not be appropriate:

• Few or no numerical parameters in the function

• One algorithm that is already fixed in capability, such as it has no optional
modes or alternate algorithms

• Function supports only one data type

• Significant or large code size in the mdlOutputs() function

• Your models use multiple instances of this library function

Command-Line Information

Parameter: InlineDSPBlks
Type: string
Value: 'on' | 'off'
Default: on

10-14

Embedded IDE Link CC Pane

Recommended Settings

Application Setting

Debugging Off
Traceability On
Efficiency On
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-15

10 Embedded IDE Link™ CC Configuration Parameters

Project options
Sets the project options for building your project from the model.

Settings
Default: Custom

Custom
Applies a custom project configuration that provides a specialized
combination of build and optimization settings.

The default settings are the same as the Release project configuration
in CCS, except for the compiler and memory options. For the compiler
options, Custom uses the Function(-o2) compiler setting. For memory
configuration, Custom specifies the -ml1 memory model that uses near
functions and data.

Debug
Applies the Debug project options defined by Code Composer Studio
software to the generated project and code.

Release
Applies the Release project configuration defined by Code Composer
Studio software to the generated project and code.

Dependencies
Selecting Custom disables the reset options for Compiler options string
and Linker options string.

Command-Line Information

Parameter: projectOptions
Type: string
Value: Custom | Debug | Release
Default: Custom

10-16

Embedded IDE Link CC Pane

Recommended Settings

Application Setting

Debugging Custom or Debug

Traceability Custom, Debug, Release

Efficiency Release

Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-17

10 Embedded IDE Link™ CC Configuration Parameters

Compiler options string
Lets you enter a string of compiler options to define your project configuration.

Settings
Default: No default

Tips

• To import compiler string options from the current project in CCS, click
Get from IDE.

• To reset the compiler options to the default values, click Reset.

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

• Setting Project options to Custom applies -g as the default compiler
options string.

• Setting Project options to Debug applies -g -d _Debug as the default
compiler options string.

• Setting Project options to Release applies -o2 as the default compiler
options string.

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom

Traceability Custom

10-18

Embedded IDE Link CC Pane

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-19

10 Embedded IDE Link™ CC Configuration Parameters

Linker options string
Enables you to specify linker command options that determine how to link
your project when you build your project.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the
options string.

• To import linker string options from the current project in CCS, click Get
from IDE.

• To reset the linker command options to the default values, click Reset.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: linkerOptionsStr
Type: string
Value: any valid compiler option
Default: none

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

10-20

Embedded IDE Link CC Pane

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-21

10 Embedded IDE Link™ CC Configuration Parameters

System stack size (MAUs)
Allocates memory for the system stack on the processor.

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs)..

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int
Traceability int
Efficiency int
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-22

Embedded IDE Link CC Pane

Build action
Defines how Real-Time Workshop software responds when you press Ctrl+B
to build your model.

Settings
Default: Build_and_execute

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After the software links your compiled code, the
build process downloads and runs the executable on the processor.

Create_project
Directs Real-Time Workshop software to create a new project in the IDE.

Archive_library
Invokes the CCS Archiver to build and compile your project, but It does
not run the linker to create an executable project. Instead, the result
is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Real-Time Workshop code generation process to create PIL
algorithm object code as part of the project build.

Dependencies
Selecting Archive_library removes the following parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time task execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

10-23

10 Embedded IDE Link™ CC Configuration Parameters

• Reset

• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time task execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace with the option set to
export the handle

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create_project Archive_library
| Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

10-24

Embedded IDE Link CC Pane

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

For more information about PIL, refer to Using Processor in the Loop.

10-25

10 Embedded IDE Link™ CC Configuration Parameters

Interrupt overrun notification method
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Interrupt overrun notification function.

Tips

• The definition of the standard output depends on your configuration.

• The custom function must exist in the current working directory.

Dependencies
Selecting Call_custom_function enables the Interrupt overrun
notification function parameter.

Setting this parameter to Call_custom_function enables the Interrupt
overrun notification function parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

10-26

Embedded IDE Link CC Pane

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-27

10 Embedded IDE Link™ CC Configuration Parameters

Interrupt overrun notification function
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Tips
Specify a function that exists in your current working directory.

Dependencies
This parameter is enabled by setting Interrupt overrun notification
method to Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String
Traceability String
Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-28

Embedded IDE Link CC Pane

PIL block action
Specifies whether Real-Time Workshop software builds the PIL block and
downloads the block to the processor

Settings
Default: Create_PIL_block_and_download

Create_PIL_block_build_and_download
Builds and downloads the PIL application to the processor after creating
the PIL block. Adds PIL interface code that exchanges data with
Simulink.

Create_PIL_block
Creates a PIL block, places the block in a new model, and then stops
without building or downloading the block. The resulting project will
not compile in the IDE.

None
Configures model to generate a CCS project that contains the PIL
algorithm code. Does not build the PIL object code or block. The new
project will not compile in the IDE.

Tips

• When you click Build on the PIL dialog box, the build process adds the PIL
interface code to the project and compiles the project in the IDE.

• If you select Create PIL block, you can build manually from the block
right-click context menu

• After you select Create PIL Block, copy the PIL block into your model to
replace the original subsystem. Save the original subsystem in a different
model so you can restore it in the future. Click Build to build your model
with the PIL block in place.

• Add the PIL block to your model to use cosimulation to compare PIL
results with the original subsystem results. Refer to the demo “Comparing
Simulation and processor Implementation with Processor-in-the-Loop
(PIL)” in the product demos Embedded IDE Link CC

10-29

10 Embedded IDE Link™ CC Configuration Parameters

• When you select None or Create_PIL_block, the generated project will
not compile in the IDE. To use the PIL block in this project, click Build
followed by Download in the PIL block dialog box.

Dependency
Enable this parameter by setting Build action to
Create_processor_in_the_loop_project.

Command-Line Information

Parameter: configPILBlockAction
Type: string
Value: None | Create_PIL_block |
Create_PIL_block_build_and_download
Default: Create_PIL_block

Recommended Settings

Application Setting

Debugging Create_PIL_block_build_and_download

Traceability Create_PIL_block_build_and_download

Efficiency None

Safety precaution No impact

See Also
For more information, refer to Using Processor in the Loop.

10-30

Embedded IDE Link CC Pane

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This timeout value does not depend on the global timeout value in a ticcs
object or theMaximum time to complete IDE operations timeout value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:TBD
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

10-31

10 Embedded IDE Link™ CC Configuration Parameters

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-32

Embedded IDE Link CC Pane

Maximum time to complete IDE operations (s)
specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the message
in the allotted time. Click here to see a list of the functions and methods.

• This timeout value does not depend on the global timeout value in a ticcs
object or theMaximum time allowed to build project (s) timeout value

Command-Line Information

Parameter:TBD
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

10-33

10 Embedded IDE Link™ CC Configuration Parameters

See Also
For more information, refer to Embedded IDE Link CC Pane Parameters.

10-34

A

Supported Hardware

This appendix provides the details about the hardware, simulators, and
software that work with Embedded IDE Link CC.

• “Supported Platforms for Embedded IDE Link CC” on page A-2

• “Supported Versions of Code Composer Studio” on page A-9

A Supported Hardware

Supported Platforms for Embedded IDE Link CC

In this section...

“Supported Hardware and Simulators” on page A-2
“Product Features Supported by Each Processor or Family” on page A-4
“OMAP Coemulation Support” on page A-7
“Custom Hardware Support” on page A-8

This appendix lists the hardware and simulators that work with the latest
released version of Embedded IDE Link CC. Generally, the product supports
boards and simulators from a given processor family. In some cases, only the
simulators work, as noted in the tables in the next sections.

Supported Hardware and Simulators
Embedded IDE Link CC supports the following processors and boards
produced by TI and others.

Supported
Hardware Supported Simulators Description

C2000

Simulators (C24x, C27x,
C28x)

Simulators for the C2000 DSP
family

C2401 eZdsp Starter kit for the C2401
processor

C2407 eZdsp Starter kit for the C2407
processor

C2808 eZdsp Starter kit for the C2808
processor

C2812 eZdsp Starter kit for the C2812
processor

C2833x
Floating-Point
Processor

Floating-point processor from
Texas Instruments

A-2

Supported Platforms for Embedded IDE Link™ CC

Supported
Hardware Supported Simulators Description

C5000

Simulators (C54x, C5x) Simulators for the C5000 DSP
family

C5402 DSK DSP starter kit for the C5402
processor

C5416 DSK DSP starter kit for the C5416
processor

C5510 DSK DSP starter kit for the C5510
processor

C6000

Simulators (C62x, C64x,
C67x)

Simulators for the C6000 DSP
family

C6211 DSK DSP starter kit for the C6211
processor

C6416 DSK DSP starter kit for the C6416
processor

DM64x C6400 processor-based video
card

DM643x DaVinci™ processor from
Texas Instruments

C6701 EVM Evaluation module for the
C6701 processor

C6711 DSK DSP starter kit for the C6711
processor

C6713 DSK DSP starter kit for the C6713
processor

OMAP

OMAP1510 Boards and simulators based
on the OMAP1510.

A-3

A Supported Hardware

Supported
Hardware Supported Simulators Description

OMAP5910 Boards and simulators based
on the OMAP5910.

TMS470

TMS470R1x Boards and simulators based
on the TMS470R1x processor.

TMS470R2x Boards and simulators based
on the TMS470R2x processor.

Product Features Supported by Each Processor or
Family
Within the collection of hardware that Embedded IDE Link CC supports,
some features of the link do not apply.

Debug mode includes operations that CCS handles and that Embedded IDE
Link CC enables you to use from MATLAB. “Yes” in the Debug column
tells you that the listed hardware supports MATLAB interaction with CCS.
Embedded Objects support indicates that the board family supports using
objects in MATLAB to work with symbol table entries in CCS. A “Yes” in
the Hardware-in-the-Loop column means the board family supports using
function objects to run functions on your processor from MATLAB.

Embedded IDE Link CC provides components that work with and use CCS
IDE and TI Real-Time Data Exchange (RTDX):

A-4

Supported Platforms for Embedded IDE Link™ CC

Component Use

Debug Function Use objects to create reference
connections between CCS IDE
and MATLAB. From the command
window, you can run applications
in CCS IDE, send to and receive
data from processor memory, and
check the processor status, as well
as other functions such as starting
and stopping applications running
on your digital signal processors.

Data Manipulation Function Object methods and properties
that let you access and manipulate
information stored in memory and
registers on digital signal processors,
or in your Code Composer Studio
project. From MATLAB, you gather
information from your project, work
with the information in MATLAB,
doing things like converting data
types, creating function declarations,
or changing values, and return the
information to your project—all from
the MATLAB command line.

Function Call function Write scripts in MATLAB that
exercise functions from your project
on your processor. From MATLAB,
you can generate data, send the
data to your processor and use
a C function in your program
to manipulate the data on your
hardware or simulator. Afterwards,
you return the output to MATLAB
so you can analyze the results.

Processor-in-the-Loop (PIL) Evaluate how a candidate algorithm
runs on your hardware and compare
the performance to a simulation.

A-5

A Supported Hardware

Component Use

Real-Time Data Exchange (RTDX)
Component

Communications pathway between
MATLAB and digital signal
processors installed on your PC.
Using objects in Embedded IDE
Link CC, you open channels to
processors on boards in your
computer and send and retrieve data
about the processors and executing
applications, as well as send data to
the processes for use and get data
from the applications.

Real-Time Execution Profiling Reports how your process runs
in real-time on your processor
hardware at the task level.

In the next table, each processor family appears with headings that specify
the support provided.

Processor Family Supporting Embedded IDE Link CC Components and Subcomponents

Automation Interface Component
Project

Generator
Component

Verification

Processor
Family

Debug
Mode

Data
Manipulation

Function
Call
Support RTDX

Code
Generation PIL

Real-Time
Execution
Profiling

C24xx Yes No No No No No No
C27xx Yes No No No No No No
C28xx Yes Yes Yes.

Refer
to note
following
table.

Yes Yes Yes Yes

C54xx Yes Yes Yes Yes Yes Yes Yes
C55xx Yes Yes Yes Yes Yes Yes Yes
C62xx Yes Yes Yes Yes Yes Yes Yes

A-6

Supported Platforms for Embedded IDE Link™ CC

Processor Family Supporting Embedded IDE Link CC Components and Subcomponents
(Continued)

Automation Interface Component
Project

Generator
Component

Verification

Processor
Family

Debug
Mode

Data
Manipulation

Function
Call
Support RTDX

Code
Generation PIL

Real-Time
Execution
Profiling

C64x and
C64x+

Yes Yes Yes Yes Yes Yes Yes

C67x and
C67x+

Yes Yes Yes Yes Yes Yes Yes

DM64x Yes Yes Yes Yes Yes Yes Yes
DM643x Yes Yes Yes Yes Yes Yes Yes
OMAP1510 No Yes
• C55x
DSP

Yes Yes No Yes No No No

• R2x Yes Yes No No No No No
TMS470R1x Yes Yes No No No No No
TMS470R2x Yes Yes No No No No No

Note To use the Function call capability with the C28x processor family,
disable the watchdog timer on the processor. The watchdog timer interferes
with the function call utility.

OMAP Coemulation Support
An added feature for OMAP processors is coemulation for the two processors
that comprise the OMAP. Embedded IDE Link CC supports coemulation or
direct multiprocessor support for the TMS470R2x (TI-enhanced ARM925) and
TMS320C55x DSP in OMAP 1510 and OMAP 5910.

A-7

A Supported Hardware

Custom Hardware Support
Embedded IDE Link CC supports processors as shown in the previous tables.
When your custom hardware meets the following specifications:

• Uses one or more of the processors shown in the preceding tables or listed
in the Target Preferences block Processor list

• You are able to use Code Composer Studio IDE to interact with your
board/processor combination

you should be able to use Embedded IDE Link CC with your hardware.

A-8

Supported Versions of Code Composer Studio

Supported Versions of Code Composer Studio
The following table lists versions of Embedded IDE Link CC and the versions
of Code Composer Studio they support.

Embedded
IDE Link CC
Version

MATLAB
Release

Supported Version of Code Composer
Studio

3.3 R2008b Only CCS 3.3 with DSP/BIOS 5.32.01 or
5.32.05 (not 5.32.00)

3.2 R2008a Only CCS 3.3 with DSP/BIOS 5.3 (not 5.32.00)
3.1 R2007b Only CCS 3.3 with DSP/BIOS 5.3
3.0 R2007a • CCS 3.2 for C64x+ processors

• CCS 3.1 for C2000, C5000, C6000, and
OMAP processors

2.1 R2006b • CCS 3.2 for C64x+ processors

• CCS 3.1 for C2000, C5000, C6000, and
OMAP processors

2.0 R2006a+ CCS 3.1 for C2000, C5000, C6000, and OMAP
processors

1.5 R2006a CCS 3.1 for C2000, C5000, C6000, and OMAP
processors

1.4.2 R14SP3 • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

1.4.1 R14SP2 • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

1.4 R14SP1+ • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

A-9

A Supported Hardware

Embedded
IDE Link CC
Version

MATLAB
Release

Supported Version of Code Composer
Studio

1.3.2 R14SP1 • CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

• CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

1.3.1 R14 • CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

• CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

1.3 R13SP1+ CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

A-10

B

Reported Limitations and
Tips

B Reported Limitations and Tips

Reported Issues Using Embedded IDE Link CC

In this section...

“Function Call Support for Different Compiler Options” on page B-3
“Function Calls on Functions That Use Global Variables” on page B-4
“Demonstration Programs Do Not Run Properly Without Correct GEL
Files” on page B-5
“Issues Using USB-Based RTDX Emulators and the C6416 DSK and C6713
DSK” on page B-6
“Error Accessing type Property of ticcs Object Having Size Greater Then 1”
on page B-7
“Changing the represent Property of an Object” on page B-8
“Changing Values of Local Variables Does Not Take Effect” on page B-9
“Code Composer Studio Cannot Find a File After You Halt a Program”
on page B-9
“C54x XPC Register Can Be Modified Only Through the PC Register” on
page B-11
“Working with More Than One Installed Version of Code Composer Studio”
on page B-11
“Changing CCS Versions During a MATLAB Session” on page B-12
“createobj and address Return Inconsistent Page Information on C5xxx
processors” on page B-12
“MATLAB Hangs When Code Composer Studio Cannot Find a Board” on
page B-14
“Different Read Techniques Appear to Return Different Values” on page
B-16
“Using Function Call with C28x Processors” on page B-17
“RTDX Demos Do Not Run on C6727 PADK” on page B-17

Some long-standing issues affect the Embedded IDE Link CC product. When
you are using ticcs objects and the software methods to work with Code

B-2

Reported Issues Using Embedded IDE Link™ CC

Composer Studio, or using supported hardware or simulators, recall the
information provided in this section.

The latest issues in the list appear at the bottom. HIL refers to “hardware in
the loop,” also called processor in the loop (PIL) here and in other applications,
and sometimes referred to as function calls.

Function Call Support for Different Compiler Options
The CCS project compiler settings that usually return the best results during
function call operation appear in the following table:

Compiler Option
Preferred
Setting Issues With Settings

Debug info Full
Symbolic
Debug
(-g)

Consider the following when you set
the Debug Info option (applies to
CCS 2.21 and earlier versions only):

• If you select Dwarf Debug (-gw),
you may need to supply the function
declaration manually when you
select.

• If you select No Debug, debug
information is not available. You
must use the declare method to
supply the function declaration.

Optimization level none Setting Optimization Level to File
(-o3)

causes input variables not to be listed
as locally declared variables of the
function. As a result, Embedded IDE
Link CC may generate warnings while
constructing function object.

B-3

B Reported Limitations and Tips

Compiler Option
Preferred
Setting Issues With Settings

Optimization Speed
vs. Size

none none

Product level
optimization

none none

Issues When You Use Other Compiler Settings
If you make the following selections for the compiler settings to use, consider
these comments.

• Setting the Debug Info option (applies to CCS 2.21 and earlier versions
only)

- Selecting Dwarf Debug (-gw)— in some cases, you need to supply the
function declaration manually when you select Dwarf Debug.

- Selecting No Debug — no debug information is made available. In all
cases, you are required to supply the function declaration manually
using declare.

• Setting Optimization Level to File (-o3)

Input variables are not listed as locally declared variables of the function.
As a result, Embedded IDE Link CC may generate warnings while
constructing function object.

Function Calls on Functions That Use Global Variables
For functions which use global variables, the global variables must be
initialized before you attempt to perform function call processing. Without
initialization, the function call process returns incorrect results. The global
variables are automatically initialized when you configure the CCS project as
follows:

1 Your project has function main defined.

2 Your project links to an appropriate run-time support library, such as
rts6400.lib.

B-4

Reported Issues Using Embedded IDE Link™ CC

3 Your project has the load-time or run-time autoinitialization (-c or -cr
option) set.

Using other configurations for your CCS project bypasses the proper
initialization processes. Refer to your TI documentation on run-time
initialization for more information.

Demonstration Programs Do Not Run Properly
Without Correct GEL Files
To run the Embedded IDE Link CC demos, you must load the appropriate
GEL files before you run the demos. For some boards, the demos run fine
with the default CCS GEL file. Some boards need to run device-specific GEL
files for the demos to work correctly.

Here are demos and boards which require specific GEL files.

• Board: C5416 DSK

Demos: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

• Board: C6416 DSK

Demos: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: DSK6416.gel

• Board: C6713 DSK

Demos: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: DSK6713.gel

In general, if a demo does not run correctly with the default GEL file, try
using a device-specific GEL file by defining the file in the CCS Setup Utility.

B-5

B Reported Limitations and Tips

Issues Using USB-Based RTDX Emulators and the
C6416 DSK and C6713 DSK
You may encounter a few problems when you try to use the USB-based RTDX
emulators with the C6713 and C6416 DSP Starter Kits. The problems relate
to setting up RTDX and opening/closing RTDX channels.

1 Setting up and cleaning up RTDX.

If you do not set up RTDX correctly, your hardware might end up in a bad
state and RTDX data transfers may not work correctly. Rerunning the
application without setting up RTDX properly yields the same result. To
bring the hardware back to a working state, you have to recycle power to
your board. Likewise, if RTDX is not cleaned up correctly after running an
application, your hardware can go into a bad state.

2 When you close and reopen CCS for DSP Starter Kit for TMS320C6416 or
DSP Starter Kit for TMS320C6713, you have to adhere to the two second
close and reopen requirement as noted in TI documentation.

In the Quick Start Installation Guide, under “Debug Hints and Trouble
Shooting,” item 6 states

“The LED above the USB connector illuminates when the DSK is powered on. Do not
launch Code Composer Studio until the LED turns off.”

When your CCS application terminates, the USB bus is nonenumerated. It
takes a few seconds (roughly two seconds in Windows XP) to enumerate
the USB bus again.

Consequently, although the CCS application may appear to have gone
away from the desktop, there can still be some processes running. You
should follow the above guidelines when communicating with a C6416
DSK, C6713 DSK, or XDS510USB on a close and reopen sequence.

References
The information in this discussion comes from the following TI publications —
dsk6416_releasenotes.htm and dsk6713_releasenotes.htm

• Section 3.0 Installation

B-6

Reported Issues Using Embedded IDE Link™ CC

• Section 5.0 Some Basics on How it Works

• Quick Start Installation Guide, “Debug Hints and Trouble Shooting”

To avoid having problems in MATLAB when you work with links, note these
recommended tasks (in order) for creating handles to CCS from MATLAB.

1 Assuming CCS IDE is not open (cc_app.exe is not in the Windows Task
Manager), create a handle to CCS (cc_app.exe appears in the Task
Manager).

cc = ticcs

2 Clear the handle to CCS (cc_app.exe disappears from the Task Manager).

clear cc

3 Wait about two seconds before creating a new handle to CCS.

pause(2);
cc = ticcs

Error Accessing type Property of ticcs Object Having
Size Greater Then 1
When cc is a ticcs object consisting of an array of single ticcs objects such
that

cc
Array of TICCS Objects:

API version : 1.2
Board name : C54x Simulator (Texas Instruments)
Board number : 0
Processor 0 (element 1) : TMS320C5407 (CPU, Not Running)
Processor 0 (element 2) : TMS320C5407 (CPU, Not Running)

you cannot use cc to access the type object. The example syntaxes below
generate errors.

• cc.type

• add(cc.type,'mytypedef','int')

B-7

B Reported Limitations and Tips

To access type without the error, reference the individual elements of cc as
follows:

• cc(1).type

• add(cc(2).type,'mytypedef','int')

Changing the represent Property of an Object
An object’s represent property is writable. You can change it to modify the
access format. For example, an object with represent set to float can be
changed to represent set to signed. After the change, the data is read as
a signed integer. Likewise, the data is written as a signed integer.

Here’s one example of changing the property value for represent. Create
a ticcs object to start.

x = createobj(cc,'g_double')
NUMERIC Object stored in memory:
Symbol name : g_double
Address : [14648 0]
Data type : double
Word size : 64 bits
Address units per value : 8 au
Representation : float
Size : [1]
Total address units : 8 au
Array ordering : row-major
Endianness : little

read(x)

ans =
17.0010

set(x,'represent','signed')

read(x)

ans =
4.6255e+018

B-8

Reported Issues Using Embedded IDE Link™ CC

Take care when you change the value of the represent property to float.
Only change this property when the word referenced by the object is at least
32 bits.

As one example, if an object is a 16-bit integer where represent=signed, you
cannot change the value for represent to float because to access floating
point data, the data must be at least 32 bits long.

Changing Values of Local Variables Does Not Take
Effect
If you halt the execution of your program on your DSP and modify a local
variable’s value, the new value may not be acknowledged by the compiler. If
you continue to run your program, the compiler uses the original value of
the variable.

This problem happens only with local variables. When you write to the local
variable via the Code Composer Studio Watch Window or via a MATLAB
object, you are writing into the variable’s absolute location (register or
address in memory).

However, within the processor function, the compiler sometimes saves
the local variable’s values in an intermediate location, such as in another
register or to the stack. That intermediate location cannot be determined or
changed/updated with a new value during execution. Thus the compiler uses
the old, unchanged variable value from the intermediate location.

Code Composer Studio Cannot Find a File After You
Halt a Program
When you halt a running program on your processor, Code Composer Studio
may display a dialog box that says it cannot find a source code file or a library
file.

When you halt a program, CCS tries to display the source code associated
with the current program counter. If the program stops in a system library
like the runtime library, DSP/BIOS, or the board support library, it cannot
find the source code for debug. You can either find the source code to debug it

B-9

B Reported Limitations and Tips

or select the Don’t show this message again checkbox to ignore messages
like this in the future.

For more information about how CCS responds to the halt, refer the online
Help for CCS. In the online help system, use the search engine to search for
the keywords “Troubleshooting” and “Support.” The following information
comes from the online help for CCS, starting with the error message:

File Not Found
The debugger is unable to locate the source file necessary to enable
source-level debugging for this program.

To specify the location of the source file

1 Click Yes. The Open dialog box appears.

2 In the Open dialog box, specify the location and name of the source file
then click Open.

The next section provides more details about file paths.

Defining a Search Path for Source Files
The Directories dialog box enables you to specify the search path the debugger
uses to find the source files included in a project.

To Specify Search Path Directories

1 Select Option > Customize.

2 In the Customize dialog box, select the Directories tab. Use the scroll
arrows at the top of the dialog box to locate the tab.

The Directories dialog box offers the following options.

• Directories. The Directories list displays the defined search path.
The debugger searches the listed directories in order from top to bottom.

B-10

Reported Issues Using Embedded IDE Link™ CC

If two files have the same name and are located in different directories,
the file located in the directory that appears highest in the Directories
list takes precedence.

• New. To add a new directory to the Directories list, click New.
Enter the full path or click browse [...] to navigate to the appropriate
directory. By default, the new directory is added to the bottom of the list.

• Delete. Select a directory in the Directories list, then click Delete to
remove that directory from the list.

• Up. Select a directory in the Directories list, then click Up to move
that directory higher in the list.

• Down. Select a directory in the Directories list, then click Down to
move that directory lower in the list.

3 Click OK to close the Customize dialog box and save your changes.

C54x XPC Register Can Be Modified Only Through
the PC Register
You cannot modify the XPC register value directly using regwrite to write
into the register. When you are using extended program addressing in C54x,
you can modify the XPC register by using regwrite to write a 23-bit data
value in the PC register. Along with the 16-bit PC register, this operation also
modifies the 7-bit XPC register that is used for extended program addressing.
On the C54x, the PC register is 23 bits (7 bits in XPC + 16 bits in PC).

You can then read the XPC register value using regread.

Working with More Than One Installed Version of
Code Composer Studio
When you have more than one version of Code Composer Studio installed on
your machine, you cannot select which CCS version MATLAB Embedded IDE
Link CC attaches to when you create a ticcs object. If, for example, you have
both CCS for C5000 and CCS for C6000 versions installed, you cannot choose
to connect to the C6000 version rather than the C5000 version.

When you issue the command

B-11

B Reported Limitations and Tips

cc = ticcs

Embedded IDE Link CC starts the CCS version you last used. If you last used
your C5000 version, the cc object accesses the C5000 version.

Workaround
To make your ticcs object access the correct processor:

1 Start and close the appropriate CCS version before you create the ticcs
object in MATLAB.

2 Create the ticcs object using the boardnum and procnum properties to
select your processor, if needed.

Recall that ccsboardinfo returns the boardnum and procnum values for
the processors that CCS recognizes.

Changing CCS Versions During a MATLAB Session
You can use only one version of CCS in a single MATLAB session. Embedded
IDE Link CC does not support using multiple versions of CCS in a MATLAB
session. To use another CCS version, exit MATLAB and restart it. Then
create your links to the new version of CCS.

createobj and address Return Inconsistent Page
Information on C5xxx processors
The address page of a C5xxx variable given by the createobj and address
methods are sometimes inconsistent.

Though the pages are not the same, they are pointing to the same location in
memory. When you write data to one location, such as on page=0, and then
you read from the other location, such as page=1, you return the same value.
The following example should help clarify the situation.

Getting information about an object in memory through createobj:

ibufobj = createobj(cc,'ibuf')

NUMERIC Object stored in memory:

B-12

Reported Issues Using Embedded IDE Link™ CC

Symbol name : ibuf
Address : [8913 1] <------ Notice the Page = 1 indication.
Data type : int
Word size : 16 bits
Address units per value : 1 au
Representation : signed
Size : [10]
Total address units : 10 au
Array ordering : row-major
Endianness : big

Now use address to get the same information about ibuf.

address(cc,'ibuf')
ans =
8913 0 <------ Notice the Page = 0 indication.

Though the pages appear to be different, reading either of the two yields
the same result.

read(ibufobj)
ans =
Columns 1 through 10
1 0 0 0 0 0 0 0 0 0

read(cc,address(cc,'ibuf'),'int16',10)
ans =
Columns 1 through 10
1 0 0 0 0 0 0 0 0 0

Modify the second element of ibuf to 2 in CCS and then read the value from
MATLAB through both ibuf and ibufobj.

read(cc,address(cc,'ibuf'),'int16',10)
ans =
Columns 1 through 10
1 2 0 0 0 0 0 0 0 0

read(ibufobj)
ans =

B-13

B Reported Limitations and Tips

Columns 1 through 10
1 2 0 0 0 0 0 0 0 0

For the final check, modify ibuf from MATLAB using ibufobj and then read
from MATLAB. The results are the same.

write(ibufobj,1:10)
>> read(ibufobj)
ans =
Columns 1 through 10
1 2 3 4 5 6 7 8 9 10
>> read(cc,address(cc,'ibuf'),'int16',10)
ans =
Columns 1 through 10
1 2 3 4 5 6 7 8 9 10

Modify ibuf from MATLAB using address and then read ibuf from
MATLAB. Again the results are the same.

write(cc,address(cc,'ibuf'),int16(10:-1:1))
read(cc,address(cc,'ibuf'),'int16',10)
ans =

Columns 1 through 10
10 9 8 7 6 5 4 3 2 1

read(ibufobj)
ans =
Columns 1 through 10
10 9 8 7 6 5 4 3 2 1

MATLAB Hangs When Code Composer Studio Cannot
Find a Board
In MATLAB, when you create a ticcs object, the construction process for
the object automatically starts CCS. If CCS cannot find a processor that is
connected to your PC, you see a message from CCS like the following DSP
Device Driver dialog box that indicates CCS could not initialize the processor.

B-14

Reported Issues Using Embedded IDE Link™ CC

Four options let you decide how to respond to the failure:

• Abort — Closes CCS and suspends control for about 30 seconds. If you
used MATLAB to open CCS, such as when you create a ticcs object, the
system returns control to MATLAB after a considerable delay, and issues
this warning:

??? Unable to establish connection with Code Composer Studio.

• Ignore— Launches CCS without connecting to any processor. In the CCS
IDE you see a status message that says EMULATOR DISCONNECTED
in the status area of the IDE. If you used MATLAB to launch CCS, you
get control immediately and Embedded IDE Link CC creates the ticcs

B-15

B Reported Limitations and Tips

object. Because CCS is not connected to a processor, you cannot use the
object to perform processor operations from MATLAB, such as loading
or running programs.

• Retry— CCS tries again to initialize the processor. If CCS continues not
to find your hardware processor, the same DSP Device Driver dialog box
reappears. This process continues until either CCS finds the processor or
you choose one of the other options to respond to the warning.

One more option, Diagnostic, lets you enter diagnostic mode if it is enabled.
Usually, Diagnostic is not available for you to use.

Different Read Techniques Appear to Return Different
Values
When you read the value of a pointer on your C54x processor, the result can
seem to depend on how you read the value. If you check the value in the
MATLAB workspace browser, you see that read returns the same values
in both cases.

The following example shows this happening with the variable g_vptr.

In source code you have the following prototype.

double mydouble;
void *g_vptr = &mydouble;

In MATLAB, perform these operations to set a value to read.

ptr = createobj(cc,'g_vptr');
convert(ptr,'Double *'); % Use double to represent ptr.
ptr1 = deref(ptr1);
write(ptr1,10^20);

With the variables defined as shown, reading the data returns different
results depending on which read syntax you use to read the data.

result1 = read(cc, ptr1.address, 'single') % Return the value...

% in single format.

returns

B-16

Reported Issues Using Embedded IDE Link™ CC

1.0000000e+020

and

result2 = read(ptr1)

returns

1.000000020040877e+020

The results appear to differ after the seventh decimal place. If you go to the
MATLAB workspace browser to look at the values, you see that result1 and
result2 are the same. The apparent difference occurs because the syntax

result1 = read(cc, ptr1.address, 'single')

explicitly states that result1 is returned in single format, as controlled by
the single input argument. On the other hand,

result2 = read(ptr1)

converts the data from ptr1 on the processor to double-precision format.
That is,

result2 = double(result1)

In general, use read() when you want to access the data on the processor.
Use the read(object,...) syntax when you are manipulating data on the
processor.

Using Function Call with C28x Processors
When you use the function call capability with any C28x processor, you must
disable the watchdog timer or the function call process does not work.

RTDX Demos Do Not Run on C6727 PADK
Limitations in the demo files prevent you from running the RTDX demos on
your C6727 Professional Audio Development Kit (PADK).

B-17

B Reported Limitations and Tips

B-18

C

Objects in Embedded IDE
Link CC

• “Introduction to Objects” on page C-3

• “Numeric Objects — Their Methods and Properties” on page C-15

• “Bitfield Objects — Their Methods and Properties” on page C-18

• “Enum Objects — Their Methods and Properties” on page C-21

• “Pointer Objects — Their Methods and Properties” on page C-24

• “String Objects — Their Methods and Properties” on page C-27

• “Rnumeric Objects — Their Methods and Properties” on page C-30

• “Renum Objects — Their Methods and Properties” on page C-33

• “Rpointer Objects — Their Methods and Properties” on page C-36

• “Rstring Objects — Their Methods and Properties” on page C-39

• “Function Objects — Their Methods and Properties” on page C-42

• “Structure Objects — Their Methods and Properties” on page C-45

• “Type Objects — Their Methods and Properties” on page C-51

• “Constructing Objects That Access Bitfields” on page C-53

• “Creating function Objects” on page C-55

• “Creating Type Objects” on page C-73

• “Tutorial — Using function Objects and Function Calls” on page C-76

• “Managing Custom Data Types with the Data Type Manager” on page
C-108

C Objects in Embedded IDE Link™ CC

• “Reference for the Properties of Embedded Objects” on page C-119

C-2

Introduction to Objects

Introduction to Objects

In this section...

“Some Object-Oriented Programming Terms ” on page C-5
“About the Relationships Between Objects” on page C-9
“Class Diagrams for Embedded IDE Link CC” on page C-11

Embedded IDE Link CC software uses objects that apply object-oriented
programming techniques. Along with the object you use to connect MATLAB
to your processor hardware, Embedded IDE Link CC provides many objects
for creating, accessing (reading from and writing to), and manipulating
(changing the contents of in MATLAB) all the symbols in the symbol table for
a program loaded on your signal processor.

Within the following table, each object in the Class Name column provides
access to objects as described.

Class
Name Inherits From Description

bitfield memoryobj class Access the contents of a bitfield defined in
your code

enum numeric class Contents of an enumerated data type
stored in memory defined in your code

function None Contents of a function in your source
code, or used in your project as a library
function. Can also represent new functions
you develop and add to your project.

numeric memoryobj class Access the contents of a numeric data type
stored in memory defined in your code

pointer numeric class Contents of a pointer stored in a memory
location on your processor

renum rnumeric class Contents of an enumerated data type
stored in a register on your processor

C-3

C Objects in Embedded IDE Link™ CC

Class
Name Inherits From Description

rnumeric registerobj class Contents of register that contains a
numeric data type

rpointer rnumeric class Contents of a pointer stored in a register
on your processor

rstring rnumeric class Contents of a string stored in a register on
your processor

string numeric class Contents of a string stored in a memory
location on your processor

structure None Contents of a structure stored in memory
on your processor

type None Typedefs stored in memory on your
processor after you add them to the type
object

In the Inherits From column you see the name of another class. Classes
that inherit from another class contain all the properties and methods of
the Inherited From class as well as their own unique properties. Note that
although object and class seem to be interchangeable, objects are instances
of classes—the properties of a class are the properties of an instance of the
class, an object. This guide treats the distinction fairly loosely, using object in
most instances.

For example, the String object has the properties and methods of the Numeric
class, and its own properties and methods.

By using the objects provided, you can modify and view any and all symbols
from MATLAB.

Each of the objects has properties and methods specific to its use, although
many of the objects use the same methods and properties, as you see in the
next sections.

C-4

Introduction to Objects

While you can use Embedded IDE Link CC software without knowing about
its object-oriented design and implementation, you might find the next
sections about objects useful to gain a better understanding of the objects.

Some Object-Oriented Programming Terms
As an object-oriented software package, describing how to use Embedded IDE
Link CC requires discussing the objects, classes, properties, and methods you
use to manipulate and access data. To ensure we use the same terms and
understand them in the same way, this section provides definitions of some
terms commonly used throughout the this guide.

For more information about objects and working with their properties and
methods (or functions), refer to Constructing Objects.

Note Except for read and write, all functions that work with objects operate
solely in your MATLAB workspace. They do not affect the data stored in
memory, registers, functions, or structures on your signal processor and in
CCS. Only read and write allow you to access and change information on
your processor or in your project in CCS.

Definitions of Object-Oriented Terms

Abstract class A class without instances. Abstract classes
expect that their concrete subclasses will
add to their structure and behavior.

Aggregation The part-of relationship between two
objects. For example, a bicycle has wheels,
so wheels are part of a bicycle. Note that
the wheels can exist separately from the
bicycle. Compare to composition.

Base class The most general class in a class structure.
Also called root classes, most applications
or systems have more than one base class.

C-5

C Objects in Embedded IDE Link™ CC

Behavior How an object reacts to its methods. How
the object state changes in response to one
of its methods acting on it.

Class A set of abstract objects that share a
common structure and behavior. A class
forms the prototype that defines the
properties and methods common to all
objects of the class. Types and classes
are not quite the same, but are used
interchangeably in this guide.

Class diagram Used to show the existence of classes and
their relationships. Class diagrams can
represent part or all of the class structure
of a system.

Composition A relationship between objects where one
part object exists only as part of the whole
object. The parts live and die together. You
create and destroy them as one.

Constructor A function that creates an object and
initializes its state. Constructors can also
initialize the state without creating the
object.

Container Class A class whose instances are collections of
other objects in the system. Also called a
package.

Function Same as method. Used in MATLAB for
consistency with other functions. Functions
and methods are not quite the same, but
are used interchangeably.

Handle A means to access any object that
Embedded IDE Link CC creates. Not used
in this guide to refer to the object. Often
the handle is the name you assign when
you create the object. For example, cc is
the object and handle when you create a
ticcs object.

C-6

Introduction to Objects

Inheritance A relationship between classes. One class
shares the structure (properties) and
behavior (methods) defined in one or more
other classes. Subclasses inherit from one
or more superclasses, typically augmenting
the superclass with their own properties
and methods.

Instance Something you can operate on. Instance
and object are synonyms and this guide
uses them interchangeably. Instantiate is
the verb form — to create an instance of
a class or object.

Instantiation To create an object — an instance of a class.
Method An operation on an object, defined as part

of the class of the object. We call this a
function.

Object Something you can operate on. Objects
that are the same class share similar
structure and behavior. An object is
a collection of properties and methods.
Some programming sources call properties
“variables.” In all cases, an object is an
instance of a class. Classes are abstract;
objects are not.

Object Diagram Shows the existence of objects and their
relationships in the logical design of a
system. Object diagrams can represent
part or all of the class structure of a system.

C-7

C Objects in Embedded IDE Link™ CC

Object-based Programming Programming style that organizes
programs as cooperative collections of
objects.

Each object represents an instances of a
type; where the types are members of an
hierarchy, united through relationships
that are not inheritance relationships.
Compare to object-oriented programming.

Object-oriented Programming Programming implementation that
organizes programs as cooperative
collections of objects.

Each object represents an instance of
some class, and the classes are members
of an hierarchy of classes united through
inheritance relationships. Compare to
object-based programming.

Property Part of an object — treated as a variable at
times. Also called attribute, it is part of the
structure that defines the state of an object.

Subclass A class that inherits from one or more
classes, called its superclasses.

Superclass A class that other classes inherit from. The
inheriting classes are called subclasses.

State The accumulated results of the behavior of
an object. At any time, the state of an object
encompasses the properties of the object
and the values for each of the properties.

Structure The concrete representation of the state of
an object.

Determining an Object Class
After you create an object, use whos to determine the class for your new object
(although you should know the class from the input argument you provided
to createobj). Being able to query the class for an object is particularly
important in this case because the constructor createobj determines the

C-8

Introduction to Objects

class of the object created — you cannot specify the object class. Depending on
the input symbol name you provide to createobj, the returned class changes.
So you need to be able to determine the class. whos lets you do this.

If you use the MATLAB Workspace browser, your object appears in the list
of the contents of your workspace, indicating the object type and class —
just like whos.

Alternatively, using createobj or ticcs without the closing semicolon (;) at
the end of the command directs MATLAB to display the properties of your
new object in the MATLAB window when you create the object.

About the Relationships Between Objects
Embedded IDE Link CC uses objects exclusively to access and manipulate
complex data structures and functions, among other programming constructs,
in your project and code. Many of the objects inherit properties and functions,
also called methods, from other objects. The class diagrams and tables
presented in the next sections discuss and show the relationships between the
objects that you create when you use createobj.

The Base Classes

Class Name Description

Memoryobj An abstract class. The numeric and bitfield classes inherit
properties and methods from this class, making this a
superclass. You cannot create an instance of this class.
Subclasses of the memoryobj class always describe objects
that reside in DSP memory on your processor.

Registerobj An abstract class. The rnumeric class inherits properties
and methods from this class, making this a superclass.
You cannot create an instance of this class. Subclasses of
the registerobj class always describe objects that reside in
DSP registers on your processor.

C-9

C Objects in Embedded IDE Link™ CC

The Subclasses

Class Name Description

Numeric A superclass from which the enum, pointer, and string
subclasses inherit properties and methods. You can
create an object of this class using createobj. Numeric
inherits from the abstract class memoryobj.

Enum A subclass of the numeric class. You can create an object
of this class using createobj.

Pointer A subclass of the numeric class. You can create an object
of this class using createobj.

String A subclass of the numeric class. You can create an object
of this class using createobj.

Bitfield A subclass of the memoryobj class. You can use
createobj to make a bitfield object.

Rnumeric A superclass from which the renum, rpointer, and rstring
subclasses inherit properties and methods. You can
create an object of this class using createobj. Rnumeric
inherits from the abstract class registerobj.

Renum A subclass of the registerobj class. You can create an
object of this class using createobj.

Rpointer A subclass of the registerobj class. You can create an
object of this class using createobj.

Rstring A subclass of the registerobj class. You can create an
object of this class using createobj.

Other Classes

Class Name Description

Function A class containing information about a function in your
project. createobj constructs this class directly.

C-10

Introduction to Objects

Other Classes (Continued)

Class Name Description

Structure A class containing information about a structure in
memory on your processor. createobj constructs this
class directly.

Type A class containing information about C type definitions
in the source code for your project. Type objects are
composition objects to ticcs objects. When you create a
ticcs object, it includes a type object.

Class Diagrams for Embedded IDE Link CC
One of the most important features of object-oriented programming is the
relationship between the classes that compose the system. Class relationships
lend themselves to a graphical layout like a tree structure, where the
structure of the tree shows clearly the super classes and subclasses, the
base classes, and the other classes. In addition, the diagrams can show the
properties and methods for each class, and where a subclass adds properties
and methods to those it inherits from its superclass.

The following figures show the methods and properties of each class or object.
For short descriptions about the properties for each class, refer to the tables
in the following sections:

• “Numeric Objects — Their Methods and Properties” on page C-15

• “Bitfield Objects — Their Methods and Properties” on page C-18

• “Enum Objects — Their Methods and Properties” on page C-21

• “Pointer Objects — Their Methods and Properties” on page C-24

• “String Objects — Their Methods and Properties” on page C-27

• “Rnumeric Objects — Their Methods and Properties” on page C-30

• “Renum Objects — Their Methods and Properties” on page C-33

• “Rpointer Objects — Their Methods and Properties” on page C-36

• “Rstring Objects — Their Methods and Properties” on page C-39

C-11

C Objects in Embedded IDE Link™ CC

• “Function Objects — Their Methods and Properties” on page C-42

• “Structure Objects — Their Methods and Properties” on page C-45

• “Type Objects — Their Methods and Properties” on page C-51

Detailed descriptions of the properties appear in the section “Reference for
the Properties of Embedded Objects” on page C-119.

�������
�	�
����

����
�����
������
���������
��������
����������
�������������������
��
��

����������	
���

�������
������
����
�����������������
����������
�������
���������
����
����������
������
��
�������
����
������
����������
������������
�������
��
����
�������
��������
������
�	�
����

����
��
�����
��������
�����
����������
����
�����
�
��������
�
��������
����������
��
��
��
�������������

�������	
���

������
��������
��
�������
��������
�����

��������
�������
������
��
��������

�����	
���

Class Diagram of the Memory Class

C-12

Introduction to Objects

�������
��
����
�������
������
���
����������
����
������ ��
�	�
����
�	�
���
���

����������!������
�
��"�#�$%�%&
��
��������������
�����������#�'
��
��
�����������������
������������#�(
��
��������������#�(%�����

���������	
�����

������
���
�������
����������
����������
��
�������

��������������!������
�
��"�#������ ��
��
����������������#�%
����
���������!������
�
��"�#��
����
����
������������������#�%
�����������������#�%
�������������!������
�
��"�#��
����
��
�����!������
�
��"�#�(
����������
��������������������#�(
�	����
�����!������
�
��"�#�%

���
������ �)��������������	
���

��*�
��������
�������

������
������

�����
��)�����������	
���

��������
����
������

��������
�����+��
���#���
�

�����
��)��������������	
���

��*�
��������
���������
���
�����
����

������������
��

�����
��)�������������	
���

Class Diagram of the Structure, Function, and Type Classes

C-13

C Objects in Embedded IDE Link™ CC

�������
��
����
������� ��
�������
������
���
����������
�	�
����
�	�
���
���

�����������!������
�
��"�#�$%�%&
��
��������������
�����������#�'
��
��
����
�����������������
������������#�(
��
��������������#�(%�����

�������	
�����

�����
���
�������
����������
��
�������
����������

��������������!������
�
��"�#������ ��
��
����������������#�%
����
���������!������
�
��"�#��
����
������������������#�%
�����������������#�%
�������������!������
�
��"�#��
����
��
�����!������
�
��"�#�(
����������
��������������������#�(
�	����
�����!������
�
��"�#�%

������ �)�������������	
���

������
��*�
��������

������
������

����
��)����������	
���

��������
���
������

��������
��

����
��)�������������	
���

��*�
��������
���������
���
����
����

������������
��

����
��)������������	
���

��
��
�����
�������
����������

�����������
��
������
����
������
�������
����
�������
�������
��������
��
��
����������
����������
����������
�	����
��

������ �)������������
��	
���

Class Diagram of the Register Class

C-14

Numeric Objects — Their Methods and Properties

Numeric Objects — Their Methods and Properties

In this section...

“Properties of Numeric Objects” on page C-15
“Methods of Numeric Objects” on page C-17

When you create an object that accesses a numeric symbol in your source
code, the object constructor createobj returns a numeric object. createobj
uses the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values you
find all the information about the symbol, so that MATLAB understands how
to handle the symbol in your MATLAB workspace.

To add to the properties of the numeric class, numeric objects inherit
properties and methods from the memory class.

Properties of Numeric Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type
Default
Value Description

address mxArray [0 0] Memory address of the symbol,
in [Offset Page] format

arrayorder {col-major,row
-major}

col-major Ordering of values when
moving data from linear
memory storage to N-D arrays
in MATLAB

bitsperstorageunit double 8 Bits per smallest addressable
unit in the signal processor

C-15

C Objects in Embedded IDE Link™ CC

Property Name Property Type
Default
Value Description

endianness {little, big} 'little' Specifies whether the data is
stored as little endian or big
endian data

link MATLAB handle None Object handle that identifies
the object

name string None Name of the embedded symbol
in the symbol table

numberofstorageunits double 1 Number of storage units
needed to represent the object

postpad int 0 Number of bits of padding
added at the end of the memory
buffer. Added bits are ignored
in final numeric values

prepad int 0 Number of bits of padding
added at the beginning of the
memory buffer. Added bits are
ignored in final numeric values

represent {signed,
unsigned, float,
fract, ufract}

signed Reports the data type of the
values

size mxArray 1 Specifies the size of the array
created in MATLAB from the
data received from memory

storageunitspervalue int No default Addressable units (au) per
value in memory. Value
depends on the processor. May
be less than one when you use
bit packing

timeout double 10 seconds Time-out period for link
methods

C-16

Numeric Objects — Their Methods and Properties

Methods of Numeric Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

cast Yes Copys an object and change the data type
for a value at the same time

convert No Change the data type for a value
display Yes Display the properties of the numeric

object
reshape Yes Change the dimensions of the array that

contains the data in MATLAB

C-17

C Objects in Embedded IDE Link™ CC

Bitfield Objects — Their Methods and Properties

In this section...

“Properties of Bitfield Objects” on page C-18
“Methods of Bitfield Objects” on page C-20

When you create an object that accesses a bitfield symbol in your source
code, the object constructor createobj returns a struct object the includes
the bitfield as members of the struct object. Bitfields are always parts
of structures, so you create struct objects to access bitfields. createobj
uses the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values, you
find all the information about the symbol, so that MATLAB understands how
to handle the symbol in your MATLAB workspace.

To add to the properties of the class, bitfield objects inherit properties and
methods from the numeric and memoryobj classes.

Properties of Bitfield Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type
Default
Value Description

address mxArray [0 0] Memory address of the symbol,
in [Offset Page] format

arrayorder {col-major,row
-major}

row-major Ordering of values when
moving data from linear
memory storage to N-D arrays
in MATLAB

binarypt int 0 Location of the binary point for
fractional data types

C-18

Bitfield Objects — Their Methods and Properties

Property Name Property Type
Default
Value Description

bitsperstorageunit double 8 Bits per addressable unit in the
signal processor

endianness {little, big} little Specifies whether the data is
stored as little endian or big
endian data

length int 0 Number of bits in the bitfield
link MATLAB handle None Object handle that identifies

the object
name string None Name of the embedded symbol

in the symbol table
numberofstorageunits double 1 Number of memory units

needed to represent the object
offset int 0 Starting point of the bitfield in

relation to bit 0
postpad int 0 Number of bits of padding

added at the end of the memory
buffer. Added bits are ignored
in final numeric values

prepad int 0 Number of bits of padding added
at the beginning of the memory
buffer. Added bits are ignored
in final numeric values

represent {signed,
unsigned,
float, fract,
ufract}

signed Reports the data type of the
values

size mxArray 1 Size of the array created
in MATLAB from the data
received from memory

storageunitspervalue int 32 Addressable units (au) per value
in memory. May be less than
one when you use bit packing

C-19

C Objects in Embedded IDE Link™ CC

Property Name Property Type
Default
Value Description

timeout double 10 seconds Time out period for Embedded
IDE Link CC methods

wordsize int 32 Number of bits in a word for the
processor

Methods of Bitfield Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself.

Name Overloaded? Description

cast Yes Copy an object and change the data type
for a value at the same time

convert No Change the data type for a value
copy Yes Copy an existing object by creating a new

pointer to the object
display Yes Display the properties of the object
read Yes Return the contents of the memory

location specified by the symbol
write Yes Write one or more values to the memory

location

C-20

Enum Objects — Their Methods and Properties

Enum Objects — Their Methods and Properties

In this section...

“Properties of Enum Objects” on page C-21
“Methods of Enum Objects” on page C-23

When you create an object that accesses an enumerated symbol in your source
code, the object constructor createobj returns an enum object. createobj
uses the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values you
find all the information about the symbol, so that MATLAB understands how
to handle the symbol in your MATLAB workspace.

To add to the properties of the enum class, enum objects inherit properties and
methods from the numeric and memoryobj classes.

Properties of Enum Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type
Default
Value Description

address mxArray [0 0] Memory address of the
symbol, in [Offset Page]
format

arrayorder {col-major,row-major} row-majorOrdering of values when
moving data from linear
memory storage to N-D
arrays in MATLAB

bitsperstorageunit double 8 Bits per smallest
addressable unit in the
signal processor

C-21

C Objects in Embedded IDE Link™ CC

Property Name Property Type
Default
Value Description

endianness {little, big} little Specifies whether the data
is stored as little endian
or big endian data

label mxArray N/A Lists the enumerated
labels for the object

link MATLAB handle None Object handle that
identifies the object

name string None Name of the embedded
symbol in the symbol table

numberofstorageunits double 1 Number of memory units
needed to represent the
object

postpad int 0 Number of bits of padding
added at the end of the
memory buffer. Added
bits are ignored in final
numeric values.

prepad int 0 Number of bits of padding
added at the beginning of
the memory buffer. Added
bits are ignored in final
numeric values

represent {signed, unsigned,
float, fract, ufract}

signed Reports the data type of
the values

size mxArray 1 Specifies the size of the
array created in MATLAB
from the data received
from memory

storageunitspervalue int 32 Addressable units (au) per
value in memory. May be
less than one when you
use bit packing

C-22

Enum Objects — Their Methods and Properties

Property Name Property Type
Default
Value Description

timeout double 10
seconds

Time-out period for link
methods

value mxArray 0 Contains a vector of the
enumerated type

Methods of Enum Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

display Yes Display the properties of the object
equivalent No Return the equivalent string or

numeric value based on the input
argument

C-23

C Objects in Embedded IDE Link™ CC

Pointer Objects — Their Methods and Properties

In this section...

“Properties of Pointer Objects” on page C-24
“Methods of Pointer Objects” on page C-25

When you create an object that accesses a pointer symbol in your source
code, the object constructor createobj returns a pointer object. createobj
uses the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values you
find all the information about the symbol, so that MATLAB understands how
to handle the symbol in your MATLAB workspace.

To add to the properties of the pointer class, pointer objects inherit properties
and methods from the numeric and memory classes.

Properties of Pointer Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type Default Value Description

address mxArray [0 0] Memory address of the symbol,
in [Offset Page] format

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering of the
data moved from linear memory
storage to n-dimensional arrays

binarypt int 0 Locates binary point needed to
interpret the value

bitsperstorageunit double 8 Bits per smallest addressable
unit in the signal processor

C-24

Pointer Objects — Their Methods and Properties

Property Name Property Type Default Value Description

endianness character little Specifies whether the data is
stored as little endian or big
endian data

name mxArray None Name of the embedded symbol
in the symbol table

numberofstorageunits double 1 Number of memory units
needed to represent the object

postpad int 0 Number of bits of padding
added at the end of the memory
buffer. Added bits are ignored
in final numeric values

prepad int 0 Number of bits of padding
added at the beginning of the
memory buffer. Added bits are
ignored in final numeric values

represent {signed,
unsigned,
float, fract,
ufract}

signed Reports the representation of
the values in the object

size mxArray 1 Specifies the size of the array
created in MATLAB from the
data received from memory

storageunitspervalue double 1 Addressable units per memory
value in memory on the DSP

typestring string void Specifies the type of data the
pointer points to

wordsize int 0 Valid bits per value (read-only)

Methods of Pointer Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

C-25

C Objects in Embedded IDE Link™ CC

Name Overloaded? Description

deref No Return the data to which the specified
pointer points

C-26

String Objects — Their Methods and Properties

String Objects — Their Methods and Properties

In this section...

“Properties of String Objects” on page C-27
“Methods of String Objects” on page C-29

When you create an object that accesses a string symbol in your source
code, the object constructor createobj returns a string object. createobj
uses the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values you
find all the information about the symbol, so that MATLAB understands how
to handle the symbol in your MATLAB workspace.

To add to the properties of the string class, string objects inherit properties
and methods from the numeric and memory classes.

Properties of String Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type Default Value Description

name string None Name of the embedded
symbol in the symbol table

address mxArray [0 0] Memory address of the
symbol, in [Offset Page]
format

arrayorder {col-major,
row-major}

row-major Ordering of values when
moving data from linear
memory storage to N-D
arrays in MATLAB

C-27

C Objects in Embedded IDE Link™ CC

Property Name Property Type Default Value Description

bitsperstorageunit double 8 Bits per smallest
addressable unit in the
signal processor

charconversion mxArray ASCII Conversion type of the
characters in the object

endianness {little, big} little Specifies whether the data
is stored as little endian or
big endian data

link MATLAB handle None Object handle that
identifies the object

numberofstorageunits double 1 Number of units needed to
represent the object

postpad int 0 Number of bits of padding
added at the end of the
memory buffer. Added
bits are ignored in final
numeric values

prepad int 0 Number of bits of padding
added at the beginning of
the memory buffer. Added
bits are ignored in final
numeric values

represent {signed,
unsigned, float,
fract, ufract}

signed Reports the
representation of the
values in the object

size mxArray 1 Specifies the size of the
array created in MATLAB
from the data received
from memory

storageunitspervalue int 32 Addressable units (au) per
value in memory. May be
less than one when you
use bit packing

C-28

String Objects — Their Methods and Properties

Property Name Property Type Default Value Description

timeout double 10 seconds Time-out period for link
methods

wordsize int 0 Valid bits per value
(read-only)

Methods of String Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

equivalent Yes Return the equivalent numeric value for
the input string

readnumeric Yes Return the data in memory to MATLAB
as numeric equivalent of the values on
the processor

C-29

C Objects in Embedded IDE Link™ CC

Rnumeric Objects — Their Methods and Properties

In this section...

“Properties of Rnumeric Objects” on page C-30
“Methods of Rnumeric Objects” on page C-32

When you create an object that accesses a numeric symbol stored in a register
in your source code, the object constructor createobj returns an rnumeric
object. createobj uses the information in your project to set the properties
of the object appropriately to match the code. Within the properties and
their values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the rnumeric class, rnumeric objects inherit
properties and methods from the register class.

Classes that inherit from the registerobj base class always access data that
resides in registers on the processor, not in memory locations.

Properties of Rnumeric Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type
Default
Value Description

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering
of the data moved from
linear memory storage to
n-dimensional arrays

binarypt int 0 Locates binary point needed
to interpret fractional data
types

C-30

Rnumeric Objects — Their Methods and Properties

Property Name Property Type
Default
Value Description

bitsperstorageunit double 8 Bits per smallest register
unit in the signal processor

link MATLAB handle None Object handle that
identifies the object

name string None Name of the register symbol
in the symbol table

numberofstorageunits double 1 Number of register units
needed to represent the
register object

postpad int 0 Number of bits of padding
added at the end of the
memory buffer. Added bits
are ignored in final numeric
values

prepad int 0 Number of bits of padding
added at the beginning of
the memory buffer. Added
bits are ignored in final
numeric values

regname mxArray None Name of the register on the
signal processor

represent {signed, unsigned,
float, fract,
ufract}

signed Reports the representation
of the values in the object,
such as numeric or string

size mxArray 1 Specifies the size of the
array created in MATLAB
from the data received from
memory

storageunitspervalue double 1 Register units per register
value in memory on the
DSP

C-31

C Objects in Embedded IDE Link™ CC

Property Name Property Type
Default
Value Description

timeout double 10 seconds Time-out period for link
methods

wordsize int 0 Valid bits per value
(read-only)

Methods of Rnumeric Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

cast No Change the data type of the input
argument to another data type

convert No Convert the current data type to the
specified data type

display Display the properties of the object
read Yes Return the contents of the register

location specified by the symbol
reshape No Reshape the object in MATLAB
write Yes Write one or more values to the

register location

C-32

Renum Objects — Their Methods and Properties

Renum Objects — Their Methods and Properties

In this section...

“Properties of Renum Objects” on page C-33
“Methods of Renum Objects” on page C-35

When you create an object that accesses an enumerated symbol stored in
a register in your source code, the object constructor createobj returns a
renum object. createobj uses the information in your source code to set the
properties of the object appropriately to match the code. Within the properties
and their values you find all the information about the symbol, so that
MATLAB understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the renum class, renum objects inherit properties
and methods from the rnumeric and register classes.

Classes that inherit from the registerobj base class always access data that
resides in registers on the processor, not in memory locations.

Properties of Renum Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type Default Value Description

arrayorder {'col-major'
'row
-major'}

row-major Describes the
ordering of the data
moved from linear
memory storage to
n-dimensional arrays

binarypt int 0 Locates binary point
needed to interpret
fractional data types

C-33

C Objects in Embedded IDE Link™ CC

Property Name Property Type Default Value Description

bitsperstorageunit double 8 Bits per smallest
register unit in the
signal processor

label mxArray N/A Lists the enumerated
labels for the object

link MATLAB handle None Object handle that
identifies the object

name string None Name of the register
symbol in the symbol
table

numberofstorageunits double 1 Number of register
units needed to
represent the register
object

postpad int 0 Number of bits of
padding added at the
end of the memory
buffer. Added bits
are ignored in final
numeric values

prepad int 0 Number of bits of
padding added at
the beginning of
the memory buffer.
Added bits are ignored
in final numeric
values

regname mxArray None Name of the register
on the signal
processor

C-34

Renum Objects — Their Methods and Properties

Property Name Property Type Default Value Description

represent {signed,
unsigned,
float, fract,
ufract}

signed Reports the
representation of the
values in the object,
such as numeric or
string

size mxArray 1 Specifies the size of
the array created in
MATLAB from the
data received from
memory

storageunitspervalue double 1 Register units per
register value in
memory on the DSP

timeout double 10 seconds Time-out period for
link methods

value mxArray 0 Contains a vector of
the enumerated type

wordsize int 0 Valid bits per value
(read-only)

Methods of Renum Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

equivalent No Return the equivalent string or
numeric

read Yes Return the data from the register on
the processor

write Yes Write one or more values to the
register location

C-35

C Objects in Embedded IDE Link™ CC

Rpointer Objects — Their Methods and Properties

In this section...

“Properties of Rpointer Objects” on page C-36
“Methods of Rpointer Objects” on page C-38

When you create an object that accesses a pointer symbol stored in a register
in your source code, the object constructor createobj returns an rpointer
object. createobj uses the information in your source code to set the
properties of the object appropriately to match the code. Within the properties
and their values you find all the information about the symbol, so that
MATLAB understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the rpointer class, rpointer objects inherit
properties and methods from the rnumeric and register classes.

Classes that inherit from the registerobj base class always access data that
resides in registers on the processor, not in memory locations.

Properties of Rpointer Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type
Default
Value Description

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering
of the data moved from
linear memory storage to
n-dimensional arrays

binarypt int 0 Locates binary point needed
to interpret fractional data
types

C-36

Rpointer Objects — Their Methods and Properties

Property Name Property Type
Default
Value Description

bitsperstorageunit double 8 Bits per smallest register
unit in the signal processor

link MATLAB handle None Object handle that identifies
the object

name string None Name of the register symbol
in the symbol table

numberofstorageunits double 1 Number of register units
needed to represent the
register object

postpad int 0 Number of bits of padding
added at the end of the
memory buffer. Added bits
are ignored in final numeric
values

prepad int 0 Number of bits of padding
added at the beginning of the
memory buffer. Added bits
are ignored in final numeric
values

regname mxArray None Name of the register on the
signal processor

represent {signed,
unsigned, float,
fract, ufract}

signed Reports the representation
of the values in the object,
such as numeric or string

size mxArray 1 Specifies the size of the
array created in MATLAB
from the data received from
memory

storageunitspervalue double 1 Register units per register
value in memory on the DSP

timeout double 10 seconds Time-out period for link
methods

C-37

C Objects in Embedded IDE Link™ CC

Property Name Property Type
Default
Value Description

typestring string void Specifies the type of data the
pointer points to

wordsize int 0 Valid bits per value
(read-only)

Methods of Rpointer Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

deref No Return the data to which the
specified pointer points

read Yes Return the contents of the register
location specified by the symbol

write Yes Write one or more values to the
register location

C-38

Rstring Objects — Their Methods and Properties

Rstring Objects — Their Methods and Properties

In this section...

“Properties of Rstring Objects” on page C-39
“Methods of Rstring Objects” on page C-41

When you create an object that accesses a string symbol stored in a register in
your source code, the object constructor createobj returns an rstring object.
createobj uses the information in your source code to set the properties
of the object appropriately to match the code. Within the properties and
their values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

To add to the properties of the rstring class, rstring objects inherit properties
and methods from the rnumeric and register classes.

Classes that inherit from the registerobj base class always access data that
resides in registers on the processor, not in memory locations.

Properties of Rstring Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type
Default
Value Description

arrayorder {'col-major'
'row-major'}

row-major Describes the ordering
of the data moved from
linear memory storage to
n-dimensional arrays

binarypt int 0 Locates binary point
needed to interpret
fractional data types

C-39

C Objects in Embedded IDE Link™ CC

Property Name Property Type
Default
Value Description

bitsperstorageunit double 8 Bits per smallest register
unit in the signal
processor

charconversion mxArray ASCII Conversion character set
applied for the characters
in the referent string

link MATLAB handle None Object handle that
identifies the object

name string None Name of the register
symbol in the symbol
table

numberofstorageunits double 1 Number of register units
needed to represent the
register object

postpad int 0 Number of bits of padding
added at the end of the
memory buffer. Added
bits are ignored in final
numeric values

prepad int 0 Number of bits of padding
added at the beginning
of the memory buffer.
Added bits are ignored in
final numeric values

regname mxArray None Name of the register on
the signal processor

represent {signed, unsigned,
float, fract, ufract}

signed Reports the
representation of the
values in the object, such
as numeric or string

C-40

Rstring Objects — Their Methods and Properties

Property Name Property Type
Default
Value Description

size mxArray 1 Specifies the size of the
array created inMATLAB
from the data received
from memory

storageunitspervalue double 1 Register units per
register value in memory
on the DSP

timeout double 10 seconds Time-out period for link
methods

wordsize int 0 Valid bits per value
(read-only)

Methods of Rstring Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

equivalent Yes Return the equivalent numeric value
for the input string

readnumeric Yes Return the data in memory as a
numeric array in MATLAB

write Yes Write data to memory on the processor
writebin Yes Write data to memory on the processor

as binary data – 0s and 1s

C-41

C Objects in Embedded IDE Link™ CC

Function Objects — Their Methods and Properties

In this section...

“Properties of Function Objects” on page C-42
“Methods of Function Objects” on page C-43

When you create an object that accesses a function declared in your source
code, or a library function in your project, the object constructor createobj
returns a function object. createobj uses the information in your source
code to set the properties of the object appropriately to match the code.
Within the properties and their values, you find all the information about the
function, so that MATLAB understands how to handle the function in your
MATLAB workspace and how to run the function on your processor.

Unlike memory and register objects, function objects do not inherit
properties from a parent class.

Properties of Function Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property
Name

Property
Type

Default
Value Description

address mxArray 0 Returns the starting
memory address for the
function

filename string None Reports the name of the file
that contains the function

inputnames mxArray ASCII Lists the name of the input
arguments for the function

C-42

Function Objects — Their Methods and Properties

Property
Name

Property
Type

Default
Value Description

inputvars MATLAB
handle

None Handles to the objects
that access each input
argument to the function.
Created when you create
the function object

link MATLAB
handle

None Identifies the name of the
link object you used to create
the associated embedded
object

name string None Name of the register symbol
in the symbol table

outputvar MATLAB
handle

None Handles to the object
that accesses the output
argument from the function.
Created when you create
the function object

savedregs mxArray ASCII Lists the names of the
processor registers that are
saved during processing.
Contents of saved registers
are preserved after you run
a function or program

timeout double 10 s Specifies how long MATLAB
waits for calls to the function
to complete their work

type string ASCII Specifies the function return
type

variables mxArray ASCII Lists the names of variables
in the function

Methods of Function Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do

C-43

C Objects in Embedded IDE Link™ CC

not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself

Name Overloaded? Description

addregister No Add registers to the saved register list
cleanup No Restore CCS to the state it was in before

you ran a function. Restores the register
contents to their previous state as well

copy Yes Make a copy of the function object
declare No Provide a function declaration to

MATLAB
deleteregister No Remove a register you added to the saved

register list
display Yes Return the properties of the function
execute No Run a function or program
getinput No Get information about one or more input

arguments for a function
getoutput No Get information about the output

argument for a function
list Yes Return information about one or more

variables in your function
read Yes Read a value from memory on the

processor
resume Yes Restart execution of a paused or stopped

process
run Yes Run a program or function. Similar to

execute

write Yes Write to the processor memory

C-44

Structure Objects — Their Methods and Properties

Structure Objects — Their Methods and Properties

In this section...

“Properties of Structure Objects” on page C-45
“Methods of Structure Objects” on page C-46
“Working with Structure Objects” on page C-47

When you create an object that accesses a structure symbol declared in your
source code, the object constructor createobj returns a structure object.
createobj uses the information in your source code to set the properties
of the object appropriately to match the code. Within the properties and
their values you find all the information about the symbol, so that MATLAB
understands how to handle the symbol in your MATLAB workspace.

Like memory and register class objects, structure objects do not inherit
properties from a parent class.

Properties of Structure Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

Property Name Property Type Default Value Description

address mxArray None Address of the function
arrayorder {col-major,

row-major}
row-major Ordering of values when

moving data from linear
memory storage to N-D
arrays in MATLAB

filename mxArray None Name of the file that
contains the function

member cell array None Object that contains a list of
the structure members

C-45

C Objects in Embedded IDE Link™ CC

Property Name Property Type Default Value Description

membname cell array None Object that contains the
names of the members of
the structure

memboffset int 0 Offset of the member from
the starting address of the
structure

name string None Name of the C or assembly
function

numberofstorageunits double 1 Number of memory units
needed to represent the
object

size mxArray 1 Specifies the size of the
array created in MATLAB
from the data received from
memory

storageunitspervalue double 1 Memory units per value in
memory on the DSP

Methods of Structure Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

copy Yes Return a copy of the object
display Yes Return information about the object
getmember No Return an object that accesses one

member of a structure
read Yes Read a structure from the symbol table
write Yes Write changes or values to the structure

in memory

C-46

Structure Objects — Their Methods and Properties

Working with Structure Objects
structure objects present some unexpected behavior when you try to access
the elements referred to by the structure object. Consider the following
example that creates a structure object and accesses the members.

Suppose we have a structure variable in CCS:

creal32_T mw_output[512];

In MATLAB, create an object to mw_output. The size (512) is correctly
propagated to the structure object:

a = createobj(cc,'mw_output');

STRUCTURE Object stored in memory:
Symbol name : mw_output
Address : [2147652624 0]
Address units per value : 8 au
Size : [512]
Total Address Units : 4096 au
Array ordering : row-major
Members : 're', 'im'

If you now look at a member re of the structure the size is not 512 any more.
It returns a size of 1.

a.member.re

NUMERIC Object stored in memory:
Symbol name : re
Address : [2147652624 0]
Data type : float
Word size : 32 bits
Address units per value : 4 au
Representation : float
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little

C-47

C Objects in Embedded IDE Link™ CC

Now look at another member. Again, the size is 1.

a.member.im

NUMERIC Object stored in memory:

Symbol name : im

Address : [2147652628 0]

Data type : float

Word size : 32 bits

Address units per value : 4 au

Representation : float

Size : [1]

Total address units : 4 au

Array ordering : row-major

Endianness : little

The size of the members cannot reflect the size of the structure object.

If you have

struct tag {
int a;
int b;

} mystruct[10];

In memory, the values are arranged in the following way:

memory1: mystruct[0] -> member a value

memory2: mystruct[0] -> member b value

memory3: mystruct[1] -> member a value

memory4: mystruct[1] -> member b value

...

memory19: mystruct[9] -> member a value

memory20: mystruct[9] -> member b value

C-48

Structure Objects — Their Methods and Properties

Therefore, when you do the following functions:

structobj = createobj(cc,'mystruct')
aobj = structobj.member.a;

and aobj.size is same as structobj.size, you will be reading the wrong
set of values, as shown by the example that shows the structure memory
values and layout.

Setting the value of aobj to 1 provides a safe way to allow you to access the
members of a structure.

The most reliable way to access a structure objects members is to read the
structure into MATLAB and reference the members there. In the next code
example you see how to do this.

x = createobj(cc,'m')

STRUCTURE Object stored in memory:
Symbol name : m
Address : [13544 0]
Address units per value : 12 au
Size : [2]
Total Address Units : 12 au
Array ordering : row-major
Members : 'a', 'b'

out = read(x)

out =

1x2 struct array with fields:
a
b

out(1)

ans =

a: 3

C-49

C Objects in Embedded IDE Link™ CC

b: 1.5000

out(2)

ans =

a: 12648430
b: 1.7724e-038

read(x,'a')

ans =

3 12648430

Use the read function to return the value of a for the first element in the
structure.

read(x,1,'a')

ans =

3

read(x,2,'a')

ans =

12648430

C-50

Type Objects — Their Methods and Properties

Type Objects — Their Methods and Properties

In this section...

“Properties of Type Objects” on page C-51
“Methods of Type Objects” on page C-52

When you create an object that accesses a typedef declared in your source
code, the object constructor createobj returns a type object. createobj
uses the information in your source code to set the properties of the object
appropriately to match the code. Within the properties and their values, you
find all the information about the declaration, so that MATLAB understands
how to handle the typedef in your MATLAB workspace and how to read and
write the typedef on your processor.

Like memoryobj and registerobj class objects, type class objects do not
inherit properties from a parent class. Unlike the other objects in Embedded
IDE Link CC, type objects only exist as members of ticcs objects. You
cannot directly create a type object using createobj. When you delete the
ticcs object, you delete the type object as well. This relationship is called
composition in the standard object modeling language (UML). Instead, when
you call createobj, the resulting object includes by composition a type object,
with the object properties set to their default values.

Properties of Type Objects
Object properties can include both properties that the object inherits from its
superclass, if any, and some properties that are unique to the class itself.
For this reason, many objects in Embedded IDE Link CC share common
properties; as you use the objects you will become familiar with the common
and special properties for each.

C-51

C Objects in Embedded IDE Link™ CC

Property
Name Property Type

Default
Value Description

typelist cell array None List of the typedef equivalents in the object.
This list relates the typedef name to its
equivalent data type, either a native data
type or a custom type definition. Equivalent
types follow the order of the names in
typename

typename string None Names of the typedef entries in the object
timeout integer 30 s Local timeout value applied to type class

operations

Methods of Type Objects
Like properties, methods for objects may come from the superclass or derive
only from the class itself. For example, the cast and convert methods do
not appear in all objects; listing them here indicates that the object does not
inherit these methods but provides them itself.

Name Overloaded? Description

add No Add a new type definition to the type
object in MATLAB

clear Yes Remove an existing type declaration
from your type object

display Yes Display the properties of a type object
gettypeinfo No Return information about a type

declaration in your type object

C-52

Constructing Objects That Access Bitfields

Constructing Objects That Access Bitfields
Because bitfield objects do not stand by themselves, but only as parts of
struct objects, you work with bitfields by starting with a struct object. You
create an object that accesses the structure that uses the bitfield. With the
struct object now in your workspace, use getmember to create objects that
access the elements of the structure. For example, the next code offerings
create a structure that contains a bitfield, and then access the bitfield
elements to be able to read and write to them.

Here is the processor structure definition

struct {
int b_2 : 1;
unsigned int b_22 : 22;

unsigned int b_10 : 3;
} bit_field = { 0, 689, 4};

Create the struct object.

bit_field=createobj(cc,'bit_field')

Use bit_field and getmember to construct objects for the components in
the bit field.

b_2=getmember(bit_field,'b_2)

BITFIELD Object stored in memory:
Symbol name : b_2
Address : [2147501596 0]
Wordsize : 32 bits
Address units per value : 4 au
Representation : signed
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little
Length (bits) : 1
Offset (bits) : 0

C-53

C Objects in Embedded IDE Link™ CC

b_22=bfield.member.b_22 % Alternate syntax for accessing members

BITFIELD Object stored in memory:
Symbol name : b_22
Address : [2147501596 0]
Wordsize : 32 bits
Address units per value : 4 au
Representation : unsigned
Size : [1]
Total address units : 4 au
Array ordering : row-major
Endianness : little
Length (bits) : 22
Offset (bits) : 1

C-54

Creating function Objects

Creating function Objects

In this section...

“When to Use declare to Provide the Function Declaration” on page C-56
“Differences Between Objects for Library Functions and C Functions” on
page C-57
“Examples of Creating Function Objects” on page C-58

Like the other objects in Embedded IDE Link CC, you use createobj to
construct objects that access the functions in your program and project in
CCS. However, unlike many of the other objects, constructing function
objects has some peculiarities with which you must be familiar.

Embedded IDE Link CC function objects support two kinds of program
functions:

• Functions that you write in ANSI C

• Functions that you write in Assembly but that have C function prototypes,
such as library functions

A number of classes of functions that are allowed in your program are not
supported by function objects:

• Assembly language functions that do not have C prototypes

• Functions where the number of input arguments changes

• Functions written in non-ANSI C language

For the unsupported function types, you cannot create function objects that
access them and you cannot work with them with Embedded IDE Link CC.

In general, Embedded IDE Link CC provides three related ways to create
function objects, all of which use createobj as a starting point.

1 Use createobj with the function name in the syntax. For example, to
create an object that accesses func_name, use

ff = createobj(cc,func_name)

C-55

C Objects in Embedded IDE Link™ CC

which creates the function object ff that accesses func_name. This syntax
tells MATLAB to try to locate the function declaration string in your
project. When it finds the required declaration, createobj generates the
objects and information, such as function object property values, that
enable MATLAB to run func_name. Note that searching your project for
the function declaration may take some time, depending on projects you
have open in CCS and the communications speed between your PC host
and the processor.

If MATLAB cannot find the function declaration for func_name, one of the
next two approaches works to create the necessary function object.

Note When you use createobj to construct a function object, MATLAB
creates the function object ff even if it cannot find the specified function.
MATLAB populates ff with default values for the properties of ff.

2 Pass the function declaration string in the calling syntax for createobj.
When you use this method, MATLAB skips the search for the function
prototype and creates the function object from your input string. Here is
one way to do it, using the createobj optional keywords function and
funcdecl.

ff = createobj(cc,func_name,'function','funcdecl',declaration_string)

3 When the function object exists already, but it does not have full property
values associated with it, pass the function declaration string to the
function object with declare, and the keyword decl.

declare(ff,'decl','declaration_string')

When to Use declare to Provide the Function
Declaration
Some types of functions in your project require that you explicitly provide
the function declaration to MATLAB. In the following types of functions,
MATLAB cannot determine the function declaration from CCS:

C-56

Creating function Objects

• Functions that you write in assembly, but you provide C declaration strings
for them

• Functions in a CCS project that you compile without enabling symbolic
debugging

• Projects where you load the COFF file but not the project

• Instances where something in your function declaration, such as a
non-ANSI C keyword, causes createobj to fail to read the declaration fully

Using declare to send the declaration string corrects each of the above
situations so you can use MATLAB to run the function on your processor.

To help you see what this means, here is one example that uses declare.
Note that you cannot run this example code without modifications.

In your project:

#define NumDefinedQualifier extern
NumDefinedQualifier void foo(void)

In MATLAB:

ff = createobj(ff,'foo')

generates a warning that MATLAB could not read the function declaration for
foo. Try either of the following to overcome the error:

declare(ff,'decl','void foo(void)')

or:

declare(ff,'decl','extern void foo(void)')

Differences Between Objects for Library Functions
and C Functions
To run functions on your processor, MATLAB needs a range of information
about the function you are running. function objects in Embedded IDE Link
CC provide the information MATLAB needs. When you create an object that
accesses a function, the properties of the new function object contain all the

C-57

C Objects in Embedded IDE Link™ CC

information MATLAB requires to be able to run the function. Unfortunately,
this is not true for all functions — function objects that access library
functions do not contain the same function prototype that C function objects
contain when you create them. When you try to create a function object to
access a library function, MATLAB returns a warning message that it created
the object you requested but could not set all the properties of the object.

Library Functions
Library functions are functions that are not compiled when you build your
project. They represent precompiled functions that you call from your C
source code and the compiler does not know about the functions beyond their
locations. Examples of library functions include those functions in the C
standard library, or functions in other standard libraries. Another example
of library functions are functions written in assembly but accompanied by C
prototypes (the TI run-time libraries fall into this category). In CCS IDE,
you find library functions listed in the Libraries directory in your project
directory tree.

Functions written in non-ANSI C or functions written in another language
like Assembly that do not have C prototypes; or functions that have varying
numbers of input arguments, do not work with the function objects in
Embedded IDE Link CC.

Because library functions are not part of the compile and build process for
projects in CCS, the information about library function declarations, or
prototypes, is not available to MATLAB from the symbol table in CCS. To
overcome this problem, Embedded IDE Link CC includes a method named
declare that lets you provide the declaration for a library function from the
MATLAB command line. For more about using declare to enter function
prototype strings in to MATLAB, refer to the reference page for declare, and
to the tutorial about using functions in “Tutorial — Using function Objects
and Function Calls” on page C-76.

Examples of Creating Function Objects
The following sections cover situations you may encounter when you create
function objects:

• Run a C function.

C-58

Creating function Objects

• Run a library function.

• Run a function that includes a custom data type.

• Run code generated by Real-Time Workshop.

• Run a function that has input vectors.

Unless you have project code that supports the functions used here you cannot
run these examples. They are for instruction only.

These examples refer to four functions — sin_taylor, dotprod, adotprod,
and cdotprod. Here is the code for each one.

• Function sin_taylor is a C function.

/*--*

* Taylor Series expansion of sin function - Fixed Point

* Limitations: input range: -pi <x <pi;

*

* Input Datatype is:

* Q2.13 (or MATLAB sfix16_En13), scale factor = 2^13

* Output Datatype is:

* Q1.14 (or MATLAB sfix16_En14), scale factor = 2^14

*

* Taylor Expansion of sin function (first 4 terms)

* sin(x) =(approx) x[1 - (x^2/6)*[1 + (x^2/20)*[1 - (x^2/42)]]]

---/

#define SFIX32_EN26_VAL_1 67108864 // Integer equivalent of

1.0 in Q5.26

#define SFIX32_EN28_VAL_1 268435456 // Integer equivalent of

1.0 in Q3.28

#define SFIX32_EN30_VAL_1 1073741824 // Integer equivalent of

1.0 in Q1.30

/* Global buffers */

short ibuf[63];

short obuf[63];

short sin_taylor(short x)

C-59

C Objects in Embedded IDE Link™ CC

{

// Define 16/32 bit local variables depending on processor

#if INT_MAX == 0x7FFFFFFF

int acc,a1,a2,a3,xpow;

#elif LONG_MAX == 0x7FFFFFFF

long acc,a1,a2,a3,xpow;

#endif

xpow = x*x; // x^2 sfix32_En26

a1 = xpow/42; // x^2/42 sfix32_En26

a2 = xpow/20; // x^2/20 sfix32_En26

a3 = xpow/6; // x^2/6 sfix32_En26

acc = SFIX32_EN26_VAL_1 - a1;

acc >>= 11;

acc *= (a2>>11);

acc = SFIX32_EN30_VAL_1 - acc;

acc >>= 14;

acc *= (a3>>14);

acc = SFIX32_EN28_VAL_1 - acc;

acc >>= 11;

acc *= x;

return (acc>>16);

}

• Function dotprod is a library function and has only a prototype, no source
code.

int dotprod (short *x, short *y, int nx);

• Function adotprod

/* Global buffers */
short a[] = {1, 2, 3,4,5};

C-60

Creating function Objects

short b[] = {1, 2, 3, 4,5};

int adotprod(short x[4], short y[4])
{
int sum;
int i;
sum = 0;
for(i=0;i<4;i++) {
sum += (x[i]*y[i]);

}
return sum;

}

• Function cdotprod

/* Global buffers */

short a[] = {1, 2, 3,4,5};

short b[] = {1, 2, 3, 4,5};

/* Typedef info */

typedef int INT;

typedef short SHORT;

/*

Function cdotprod returns the dot product of

two integer arrays (datatype=short).

Inputs:

x, y - pointer to an array of shorts

n - size of array pointed to by x and y

*/

INT cdotprod(SHORT x[], SHORT y[], INT n)

{

int sum;

int i;

sum = 0;

for(i=0;i<n;i++) {

sum += (x[i]*y[i]);

}

return sum;

}

C-61

C Objects in Embedded IDE Link™ CC

Run a Standard C Function
In this example, we run function sin_taylor that computes the value for the
sine of an input value. This function accepts one input, x (using data type
short), and returns a short data type result.

To get the correct values, the input data must be converted to Q16.13 format
before passing to the function. After execution, the output value must be
converted from Q16.14 to decimal representation.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main — ensures that global variables are initialized:

run(cc,'main',1000);

Create a function object for sin_taylor:

ff = createobj(cc,'sin_taylor')

inputdata = 0.5; % Input value to use.

Set value of input x:

x_obj = getinput(ff,'x');

write(x_obj,inputdata* 2^13);

Run the function:

outputdata = run(ff);

Run a Library Function
For a library function, you pass the declaration string explicitly through
declare.

C-62

Creating function Objects

This example runs the function dotprod that computes the dot product of two
arrays. This function requires three inputs:

• x — a pointer to a vector of short data type values

• y — a pointer to a vector of short data type values

• n — the size of x and y vectors

We use the global variable a for input x, b for input y, and 4 for input nx
(because a and b are four element vectors). The function returns a short.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that you initialize the global variables:

run(cc,'main',1000);

a_addr = address(cc,'a'); % Global buffer for 'x'

b_addr = address(cc,'b'); % Global buffer for 'y'

Create the function object for the library function dotprod:

ff = createobj(cc,'dotprod')

The previous step yields an incomplete function object ff because library
functions always require that you provide the function declaration explicitly,
as follows:

declare(ff,'decl','int dotprod (short *x, short *y, int nx)')

Set the value for the input parameter x:

x_obj = getinput(ff,'x');

write(x_obj,a_addr(1));

xRef_obj = deref(x_obj);

reshape(xRef_obj,4);

x_inputval = read(xRef_obj) % Verify 'y' referent value

C-63

C Objects in Embedded IDE Link™ CC

Set the value for y, the second input parameter:

y_obj = getinput(ff,'y');

write(y_obj,b_addr(1));

yRef_obj = deref(y_obj);

reshape(yRef_obj,4);

y_inputval = read(yRef_obj) % Verify 'y' referent value

Pass the value for nx to the function:

nx_obj = getinput(ff,'nx');

write(nx_obj,4);

nx_inputval = read(nx_obj) % Verify 'nx' value

Now run the function:

run(ff);

Run a Function That Has a Custom Type Definition in the
Prototype
Having custom data types in your function declaration can cause problems
when you run the functions from MATLAB.

Case 1 — Running a Function That Has a Typedef in the Function
Prototype. This example runs the function cdotprod that computes the dot
product of two matrices. This function requires three inputs:

• x — a pointer to a vector of short data type values

• y — a pointer to a vector of short data type values

• n — the size of x and y vectors

Both n and the return argument are defined as data type INT, a custom data
type defined in the source code.

We use the global variable a for input x, b for input y, and 4 for input n
(because a and b are four-element vectors). The function returns a short.

Create a ticcs object:

C-64

Creating function Objects

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables
before you create your function object for cdotprod:

run(cc,'main',1000);

a_addr = address(cc,'a'); % Global buffer for x

b_addr = address(cc,'b'); % Global buffer for y

Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

The previous call to createobj yields an incomplete function object because
the function declaration includes an unresolved typedef — the type INT. To
resolve this error, add the custom data type INT to the type object and use
declare to pass the function declaration to MATLAB:

add(cc.type,'INT','int'); % Earlier warning that data type

% INT cannot be resolved

declare(ff,'decl','INT cdotprod (short x[], short y[], INT n)')

Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies
the size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 2 — A Second Approach to Solving the Typedef Problem. We
now run the function cdotprod, which computes the dot product of two
matrices. This function accepts three inputs:

• x — a pointer to a vector of short data type values

• y — a pointer to a vector of short data type values

• n — the size of x and y vectors

C-65

C Objects in Embedded IDE Link™ CC

We are going to use the global variable a for input x, b for input y, and 4 for
input n (because a and b are four element vectors). The function returns
a short.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding

Run to start of main to ensure that CCS initializes all of the global variables
before you create your function object for cdotprod:

run(cc,'main',1000);

a_addr = address(cc,'a'); % Global buffer for 'x'

b_addr = address(cc,'b'); % Global buffer for 'y'

Create function object for library function cdotprod:

ff = createobj(cc,'cdotprod')

Again createobj generates an incomplete function object because of the
unresolved data type INT in the function declaration. In this case, fix the
problem by adding the custom data type INT to the type object and create the
object ff again, instead of using declare to pass the function declaration
to MATLAB:

add(cc.type,'INT','int'); % Warning only mentioned that type INT

% cannot be resolved.

ff = createobj(cc,'cdotprod')

Set values for the inputs x, y, and n, and run the function, passing the input
values in the run syntax. Input x is a pointer so pass an address. Input y is a
pointer as well, so pass another address. Input n is an integer that specifies
the size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

Case 3 — A Third Approach to Solving the Typedef Problem. Once
more we are going to run the function cdotprod which computes the dot
product of two matrices. This function accepts three inputs:

C-66

Creating function Objects

• x — a pointer to a vector of short data values

• y — a pointer to a vector of short data values

• n — the size of x and y vectors

We are going to use the global variable a for input x, b for input y, and 4 for
input n (because a and b are four element vectors). cdotprod returns a short.

Create ticcs object:

cc = ticcs;

reset(cc);

pause(1); % wait for hardware reset to complete before proceeding

Run to start of main, ensuring that CCS initializes all of the global variables
before you create the function object that accesses cdotprod:

run(cc,'main',1000);

a_addr = address(cc,'a'); % Global buffer for x

b_addr = address(cc,'b'); % Global buffer for y

Create a function object for the library function cdotprod:

ff = createobj(cc,'cdotprod')

This attempt to create a new function object ff results in an incomplete
function object because MATLAB could not resolve the data type INT in the
function declaration. In this approach to overcoming the unresolved type
error, use declare to pass to MATLAB a version of the cdotprod function
declaration that does not include the offending type INT— you do not need to
add the typedef to the type object:

declare(ff,'decl','int cdotprod (short x[], short y[], short n)')

Notice that the data types for the return argument and for n now specify
int, Set values for the inputs x, y, and n, and run the function, passing the
input values in the run syntax. Input x is a pointer so pass an address. Input
y is a pointer as well, so pass another address. Input n is an integer that
specifies the size of x and y:

run(ff,'x',a_addr(1),'y',b_addr(1),'n',4);

C-67

C Objects in Embedded IDE Link™ CC

Run a Function Generated by Real-Time Workshop
We run the function ’mwdsp_fir_df_dd’, which applies a filter to a noisy input
signal. This function accepts nine input parameters and returns the filtered
signal in the input argument y.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to finish before proceeding

Now run the Real-Time Workshop generated code from the beginning to
MdlOutputs. You run from program start until MdlOutputs to ensure that all
of the code configuration processes get done — the CCS initializes all of the
variables in program. In the case of generated code, running to main is not
sufficient to ensure that all the variable get initialized:

run(cc,'runtofunc',MdlOutputs);

After running to MdlOutputs, you create the function object — pass the
function declaration to avoid MATLAB returning an error when you create
the function object. Due to the complexity of this function declaration,
we have assigned the string to a variable decl. We use the variable in the
createobj syntax:

decl = ['MWDSP_IDECL void MWDSP_FIR_DF_DD(const real_T *u,...

real_T *y, real_T * const mem_base,int_T *mem_offset,...

const int_T numDelays, const int_T sampsPerChan,...

const int_T numChans, const real_T * const b,...

const boolean_T one_fpf)'];

ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Examine the function declaration above. This declaration causes MATLAB to
fail to create the fully populated function object ff because the MWDSP_IDECL
macro at the beginning of the string. MATLAB cannot recognize this string.
Because the information in MWDSP_IDECL is not relevant to creating the
function object, you can remove this from the declaration string:

decl = ['void MWDSP_FIR_DF_DD(const real_T *u,...

real_T *y, real_T * const mem_base,int_T *mem_offset,...

const int_T numDelays, const int_T sampsPerChan,...

C-68

Creating function Objects

const int_T numChans, const real_T * const b,...

const boolean_T one_fpf)'];

ff = createobj(cc,'MWDSP_FIR_DF_DD','function','funcdecl',decl);

Now function object ff has all the information MATLAB needs.

Note You may not be able to remove offending entries in a declaration string,
as the macro MWDSP_IDECL does. You can try your declaration and see if it
works. If not, use add to include typedefs in the type object when MATLAB
complains about a data type, or remove the problem portion of the declaration
string if the function does not require the troublesome text.

With the function object in your MATLAB workspace, create objects for the
inputs to MWDSP_FIR_DF_DD:

Create an object for rtB:

rtBobj = createobj(cc,'rtB');

Get the relevant rtB member objects:

SumObj = getmember(rtBobj,'Sum');

% Store Output of MWDSP_FIR_DF_DD in FilObj

FilObj = getmember(rtBobj,'Digital_Lowpass_Fil');

Next, create an object for rtDWork

rtDWorkObj = createobj(cc,'rtDWork');

and again get the relevant member objects:

Fil_FILT_STATES = getmember(rtDWorkObj,...

'Digital_Lowpass_Fil_FILT_STATES');

DF_INDX = getmember(rtDWorkObj,...

'Digital_Lowpass_Fil_FILT_STATES');

Create one last object for filterCoeffs:

filterCoeffsObj = createobj(cc,'filterCoeffs');

C-69

C Objects in Embedded IDE Link™ CC

To run the function, you need to provide the input values:

u = SumObj.address(1); % Input 1

y = FilObj.address(1); % Input 2

mem_base = Fil_FILT_STATES.address(1); % Input 3

mem_offset = DF_INDX.address(1); % Input 4

numDelays = 65; % Input 5

sampsPerChan = 256; % Input 6

numChans = 1; % Input 7

b = filterCoeffsObj.address(1); % Input 8

one_fpf = 1; % Input 9

Run the function, providing the input argument values in input value/input
name pairs, such as 3, membase and 6, sampPerChan:

run(ff,1,u,2,y,3,mem_base,4,mem_offset,5,numDelays,6,...

sampsPerChan,7,numChans,8,b,9,one_fpf)

Run a Function That Has Vector Inputs
This example shows how to run a function that accepts vector inputs.

We are going to run the function adotprod that computes the dot product of
two matrices. adotprod accepts two inputs:

• x — a four-element vector of short data type values

• y — a four-element vector of short data type values

The compiler converts the vector inputs into pointers to the vectors. We use
the global variable a for input x and b for input y. The function returns
a short.

Create a ticcs object:

cc = ticcs;

reset(cc);

pause(1); % Wait for hardware reset to complete before proceeding.

Run to the start of main to ensure that the global variables are initialized:

C-70

Creating function Objects

run(cc,'main',1000);

a_addr = address(cc,'a'); % Global buffer for 'x'

b_addr = address(cc,'b'); % Global buffer for 'y'

Create a function object ff to access adotprod:

ff = createobj(cc,'adotprod')

The function prototype for adotprod is

int adotprod(short x[4], short y[4])

adotprod requires as input two vector arrays x and y. The compiler requires
that you pass the addresses of x[4] and y[4], not the actual vectors x and
y. So instead of writing a data vector to input object x_obj and y_obj, you
provide the addresses of existing four-element vectors:

display('INPUT VALUE ''x'':')

x_obj = getinput(ff,'x') % Note that this is a pointer to a vector

% of shorts.

display('INPUT VALUE ''y'':')

y_obj = getinput(ff,'y') % note that this is a pointer to a vector

%of shorts.

Set values of inputs x and y and run the function. Pass addresses to x and y
because both are pointers to other data:

write(x_obj,a_addr(1))

write(y_obj,b_addr(1))

x_inputval = read(reshape(deref(x_obj),4));

y_inputval = read(reshape(deref(y_obj),4));

In contrast to using pointers, using the following commands to write data to x
and y does not give you the expected result — the compiler cannot determine
where to put array [1:4]:

write(x_obj,[1:4]);
write(y_obj,[1:4]);

Now run your function:

C-71

C Objects in Embedded IDE Link™ CC

run(ff);

The preceding examples present a few of the wide variety of functions and
conditions you may encounter when you construct function objects.

C-72

Creating Type Objects

Creating Type Objects
Type objects are unique among the objects in Embedded IDE Link CC because
you cannot use createobj to create a type object directly. Each time you
create a ticcs object objectname, the new object contains an empty type
object, called objectname.type. You may note that this looks very much like a
property of the object objectname. It is, however, an object: it has properties
and methods that let you manipulate it from MATLAB.

When you create a type object, the object constructor add the following
DSP/BIOS data types to the namelist property:

BIOS Data Type Equivalent C Data Type

Void void

Float float

Double double

Long long

Int int

Short short

Char char

Embedded IDE Link CC ignores the following CCS keywords when you create
type objects: interrupt, near, far, cregister, and volatile. These keywords
have no meaning in the MATLAB workspace.

Working with Type Definitions in Projects
Type definitions (typedefs) in your C source code present a special problem
in Embedded IDE Link CC. While you can use any valid typedef in the C
programs you use in your project, MATLAB cannot read your custom data
types from the project in CCS without your help. You must supply each
typedef to MATLAB explicitly. There is no way for MATLAB to interpret
existing typedefs in your CCS project.

In particular, until you tell MATLAB about the typedefs you use in your
project, you cannot use your typedefs when you create objects that access

C-73

C Objects in Embedded IDE Link™ CC

functions whose prototypes include the typedefs as either input or output
arguments. Unless MATLAB recognizes your custom data types, you get an
error when you try to create the object or use declare to specify the function
prototype in MATLAB.

To tell MATLAB about your custom data types, you use add to add the type
definitions to a ticcs object that accesses your project in CCS.

To Add a Type Definition to an Existing ticcs Object
Adding a new type definition to a ticcs object entails using add to include the
new data type in the type object associated with your ticcs object. Follow
this example to see how you add a typedef to your type object. At the end of
the example, you use your new typedef in a function declaration.

1 Create a ticcs object:

mylink = ticcs;

2 Look at the properties of mylink, and the associated type object
mylink.type:

get(mylink)

rtdx: [1x1 rtdx]

apiversion: [1 2]

ccsappexe: 'D:\Applications\ti\cc\bin\'

boardnum: 0

procnum: 0

type: [1x1 type]

timeout: 10

page: 0

get(mylink.type)

typename: {'Void' 'Float' 'Double' 'Long' 'Int' 'Short' 'Char'}

typelist: {1x7 cell}

timeout: 10

typename contains the default set of defined types. typelist contains
seven cell arrays of the form [1x1 struct]. You can verify this by issuing
the command

C-74

Creating Type Objects

mylist.type.typelist

3 Now add a new type definition to the type object. Add a typedef mytype
which uses the uint32 data type:

add(mylink.type,'mytype','uint32')

ans =

type: 'uint32'

size: 1

uclass: 'numeric'

mylink.type.typename

ans =

Columns 1 through 7

'Void' 'Float' 'Double' 'Long' 'Int' 'Short' 'Char'

Column 8

'mytype'

typelist now contains eight 1-by-7 cell arrays, one additional one for the
new type mytype.

With MATLAB informed about your custom data type mytype, you could use
the typedef in a function declaration, such as the following command where
ff is an object that accesses the function myfunction:

declare(ff,'decl','void myfunction(short x* int32 y* float z mytype m)')

C-75

C Objects in Embedded IDE Link™ CC

Tutorial — Using function Objects and Function Calls

In this section...

“Introducing the Tutorial” on page C-77
“To Run the Hardware-In-The-Loop Tutorial” on page C-80
“Select Your Processor and Load the Tutorial Project” on page C-81
“Initialize the Embedded C Variables and Use read and write” on page C-85
“Use read, write, cast, and convert with Objects” on page C-89
“Construct a function Object” on page C-94
“Use Methods That Work with Function Objects” on page C-96
“Construct Different Objects and Work with Them” on page C-101
“Close The Tutorial and Clean Up” on page C-106

Embedded IDE Link CC provides a connection between MATLAB and a
digital signal processor in CCS. Using objects with the links provides a
mechanism for you to control and manipulate a signal processing application
using the computational power of MATLAB. This can help you debug and
develop your application.

Another use for links and objects is creating MATLAB scripts that you use
to verify and test algorithms by running the algorithms on your potential
processor during development.

Embedded IDE Link CC provides hardware-in-the-loop (HIL) functionality
that enables you to verify your signal processing (DSP) application
implementation, within the context of a system design, by simulating the
components in MATLAB that you did not implement on the digital signal
processor.

You may want to verify your implementation of an FIR filter, for example, on
your processor while simulating your input data and processing your output
data in MATLAB. The performance of your closed-loop system design may
be assessed with the real-world constraints of your hardware (the processor)
and software (DSP implementation).

C-76

Tutorial — Using function Objects and Function Calls

In this tutorial, you perform these operations from MATLAB.

• Call digital signal processing functions

• Get the function signature information, such as

- Input argument names and types

- Function return type

- Starting address

• Specify the values for each input argument

• Run the function

• Read the returned value(s)

This tutorial assumes you are relatively familiar with Embedded IDE Link
CC. If not, we suggest that you run csstutorial first to give you a better
understanding of what Embedded IDE Link CC does. Run ccstutorial by
typing ccstutorial at the command prompt in MATLAB.

Before using the function object available with Embedded IDE Link CC,
you must select a digital signal processor to be your processor because your
objects require a link to refer to. Selecting a processor is only necessary for
multiprocessor boards or multiple board configurations of CCS. When you
have only one board with a single processor, the link defaults to the existing
processor. For the links, the simulator counts as a board; if you have both a
board and a simulator that CCS recognizes, you must specify the processor
explicitly.

Introducing the Tutorial
To get you started using function objects in your CCS IDE software, Embedded
IDE Link CC includes an example script functioncalltutorial.m. As you
follow along with this tutorial, you perform tasks that step you through
creating and using function objects in MATLAB and in your projects:

1 Selecting your processor.

2 Creating and querying links to CCS IDE.

3 Constructing and using various objects, such as numeric and string objects.

C-77

C Objects in Embedded IDE Link™ CC

4 Creating and using function objects to access functions in your project.

5 Closing the links you opened to CCS IDE.

For this tutorial, you load and run a sample DSP application on a processor
you select. To help you understand how objects work, the tutorial also
demonstrates writing to memory and reading from memory and registers.
Seeing how the functions work with many of the different objects can help
you when you are doing your work.

Using the data manipulation functions can get a bit complicated. MATLAB
supports of data types for calculations, but you can convert and cast a range
of data types to and from other data types within MATLAB. To use MATLAB
to simulate, verify, or validate the performance of an algorithm running on
your processor, use data types in MATLAB that most closely match the types
you use on your processor.

The tutorial covers the objects and methods listed in the following sections.
The functions listed first apply to CCS IDE independent of the links — you
do not need a link to use these functions. The functions and methods listed
next require a CCS IDE link in place before you can use the function syntax.
Finally, the last set of entries use the function object, using the methods that
apply to working with function objects in MATLAB and your project:

Global Functions for CCS IDE — No ticcs Object Required

• ccsboardinfo — return information about the boards that CCS IDE
recognizes as installed on your PC.

• boardprocsel— select the board to processor. Although you can use this
generally, Embedded IDE Link CC provides it as an example of a user
interface you can build and as a tool in the tutorial. We do not recommend
that you use this to select your processor. Use ccsboardinfo and ticcs to
specify the processor for your processing application

• ticcs — construct a link to CCS IDE. When you construct the link you
specify the board and processor.

• clear— remove a specific link to CCS IDE or remove all existing links.

C-78

Tutorial — Using function Objects and Function Calls

Embedded IDE Link CC Functions for Working with Embedded
Objects — Require ticcs Object

• cast — create a new object with a different data type (the represent
property) from an object in Embedded IDE Link CC. Demonstrated with a
numeric object.

• convert— change the represent property for an object from one data type
to another. Demonstrated with a numeric object.

• getmember— return an object that accesses a single field from a structure.
Demonstrated with a structure object.

• list — return various information listings from CCS.

• read — read the information at the location accessed by an object into
MATLAB as numeric values. Demonstrated with numeric, string,
structure, and enum objects.

• readnumeric — return the numeric equivalent of data at the location
accessed by an object. Demonstrated with an enum object.

• write— write to the location referenced by an object. Demonstrated with
numeric, string, structure, and enum objects.

Embedded IDE Link CC Functions for Working with Embedded
Functions — Uses Function Objects

• run — run a function on your processor.

• copy — copy an existing function.

• declare — create a new function for your project from MATLAB. With
this method you create the function prototype, configuring the input and
output arguments, among other things.

• getinput— create the input arguments for your new function.

• getoutput— create the output arguments for your new function.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

C-79

C Objects in Embedded IDE Link™ CC

To run the tutorial in MATLAB, click run functioncalltutorial. Running
the interactive tutorial in MATLAB puts you in an interactive mode where
the tutorial program provides prompts and text descriptions to which you
respond to move to the next portion of the lesson. The interactive tutorial
covers the same information provided by the following tutorial sections. To
view the tutorial M-file, click tutorial.

To Run the Hardware-In-The-Loop Tutorial
Running the tutorial consists of completing the following tasks that cover
setting up and running a project in CCS and interacting with the project from
MATLAB, as well as running functions from MATLAB on your processor
hardware. In order, the tasks are

1 Select your processor and establish the link between MATLAB and the
processor. These operations, or some variant of them, are the first things
you do to work between MATLAB and CCS.

2 Load the tutorial project.

3 Initialize the embedded C variables, then construct and work with an
embedded object.

4 Use read, write, cast, and convert to manipulate a few variables.
Within this section you learn that read, write, cast, and convert behave
differently depending on the object you are using.

5 Construct a function object and run the function from MATLAB.

6 Exercise various methods that work with function objects, such as copy.

7 Construct other embedded objects and work with them, such as pointer
objects, enum objects, and type objects.

8 Close the tutorial and clean up the lingering objects, handles, and assorted
variables left over. Close CCS as well.

C-80

Tutorial — Using function Objects and Function Calls

Note To run this tutorial, you must have either a C54xx or C6xxx processor
and board, or be using one of the C54 or C6x simulators in CCS. Embedded
IDE Link CC does not support function calls for this tutorial on other TI
processors.

This is a rather long and complicated tutorial, because the embedded object
concepts are somewhat less straightforward and more numerous than the
ticcs or rtdx objects and concepts.

Stopping and Saving the Tutorial Program
If you stop in the middle of the tutorial, save your workspace so you can
reload the tutorial program (hiltut.board.out, where board is the numeric
designation of your processor, such as 6x11 or 54xx) directly into CCS and
continue later. To save your workspace before you close MATLAB, select
File > Save Workspace As from the MATLAB menu bar. To start the
tutorial again, reload the MATLAB workspace you stored and build and load
the .out file to start the tutorial.

Select Your Processor and Load the Tutorial Project
You start by selecting your DSP using a tool called boardprocsel. Then
you create a connection between MATLAB and CCS. The connection is
represented by a MATLAB object that you save in variable cc.

Note You use the digital signal processor that you select in the GUI for the
rest of this tutorial. For single processor installations of CCS, click OK to
continue. When you click OK, boardprocsel assigns the board and processor
identification information to the output arguments boardnum and procnum.

1 Start the board selection tool by entering

[board,processor] = boardprocsel

Follow the instructions on the dialog box to select your processor.

C-81

C Objects in Embedded IDE Link™ CC

2 Use the board and processor variables to construct a ticcs object
named cc:

cc=ticcs(boardnum,board,procnum,processor)

Now that you have established the connection between MATLAB and your
processor (the link), the processor needs something to do. Your next step is to
create or load executable code for the processor DSP with CCS.

For this tutorial, we created a CCS project file and board-specific executables
and included them with MATLAB. In this tutorial section, you load the
included executable directly; if the load fails (perhaps because you selected
a different board or processor), you build the included project to compile and
generate the executable for your processor.

The following functions locate the function call tutorial project and load it
into CCS. Loading the project uses open, and directs CCS to load the project
files or a program file.

1 Start by gathering some information about the cc object you constructed.
Enter the following function calls to learn more about cc and to assign
MATLAB variables to the values of some properties of cc:

linkinfo = info(cc);

familycpu = linkinfo.subfamily;

revisioncpu = linkinfo.revfamily;

board = GetDemoProp(familycpu,revisioncpu,hiltutorial);

2 Now locate the project file for the tutorial and assign the path to a variable:

projfile = fullfile(matlabroot,toolbox,ccslink,ccsdemos,...

hiltutorial,board.hiltut.projname);

3 For convenience, assign the path to the project file to a variable (you use it
in a later step):

projpath = fileparts(projfile);

4 Now open the project file, using the link cc:

open(cc,projfile); % Open project file

C-82

Tutorial — Using function Objects and Function Calls

5 To make your CCS working directory the same as your project directory,
use cd:

cd(cc,projpath); % Change working directory of CCS

Changing the working directory ensures that CCS finds all the project files
and stores changes in the same area as well.

6 When you created cc, the process opened CCS with the visibility set to 0
— not visible. You are going to need to see the source files and variables
for the tutorial, so set the visibility for CCS to 1:

visible(cc,1)

7 Finally, open the tutorial source file, activate it, and bring it to the
foreground in CCS:

open(cc,'hiltut.c' ,'text');
activate(cc,'hiltut.c','text');

Notice that the tutorial project is loaded in CCS. Examine the files in CCS
that compose this project. The main source file the project uses is hiltut.c
(the same for all processors), accompanied by a linker command file (*.cmd)
and a vector table source file (*.asm) that will be different depending on the
DSP family you are using. Also review the variables and functions in the
file hiltut.c— you manipulate them from MATLAB later in the tutorial.
Throughout the remaining tutorial, we call these variables and functions
embedded objects or variables. Before you build this project, try to load the
included executable program file hiltut.loadfile.

8 Use load to load the processor executable file to the processor by entering
the following command:

load(cc,board.hiltut.loadfile,30)

Possibly the load failed. This might happen when the load file was created
for a different processor than the one you are using. When this happens,
try rebuilding the executable and then loading it before proceeding.

C-83

C Objects in Embedded IDE Link™ CC

9 To create the executable file for the project from the source files, use build.
Before proceeding to build the file, you should set up the build options
for the build process, just as you would in CCS. From MATLAB, use
setbuildopt with cc to provide the build options and needed configuration:

cc.setbuildopt(compiler,board.hiltut.Cbuildopt);

10 To avoid overwriting the existing executable file, redirect the output
program file to a temporary directory on your system:

eval([cc.setbuildopt(Linker , -c -o 'tempdir...

board.hiltut.loadfile' -x)]);

In the eval syntax, notice that you use the dot notation to access the
members of the structure or object cc. Using this notation to access
properties of an object is common in MATLAB operations.

11 Everything is ready for you to build your project. Use the following
command to start the build:

build(cc,all,60);

Depending on your configuration, building a project can be slow and the
default timeout value may not be long enough. Therefore, an explicit 60
second timeout is supplied as an input argument with the build syntax.
Wait for the build operation to complete and press Enter before proceeding.

12 You have built the executable. Now load the program to your processor
with this code. Note that you are loading the program from your temporary
directory and you provide an explicit timeout value of 40 s:

load(cc,['tempdir','board.hiltut.loadfile'],40)

Again, this load might fail for a number of reasons. One might be that
your processor DSP needs different linker command (*.cmd) and vector
table source (*.asm) files. If so, attempt to rebuild the executable with the
appropriate files and then load it from the CCS IDE. After you load the
executable successfully, continue the tutorial.

13 To make sure the working directory is correct for the rest of the tutorial,
reset it to the project path from step 5:

C-84

Tutorial — Using function Objects and Function Calls

cd(cc,projpath); % Restore CCS working directory

Initialize the Embedded C Variables and Use read
and write
Direct access to DSP memory is powerful, but for C programmers it can be
more convenient to manipulate memory in ways more like working with the
defined C variables. Embedded IDE Link CC implements this approach by
using MATLAB objects as representations of embedded entities (entries in the
symbol table for your project).

This section of the tutorial starts by investigating data values in the program
and manipulating them using embedded objects. For that you apply the
method list with variable idat, which queries CCS for information about
the variable. idat is a global C variable in the tutorial program hiltut.c.

1 Enter the following code to ensure that the embedded C variables in your
project are initialized. In this tutorial, main contains all the variables
required for the project. Otherwise the methods for accessing variables
outside of main do not work because they are not initialized by running
to main:

run(cc,'main')

When you look at the project in CCS, you see that the program is running
— CCS shows the CPU as running.

2 Function list provides one way to gather information about the embedded
variables and functions in your project. Use the following list examples
to explore the tutorial program. In each example, you could assign the
return structure to an output argument by including an argument on the
left side of the list syntax:

list(cc,'function')

Warning: NAME 'ASM$' is an invalid ML structure fieldname. The

dollar ($) character is replaced by 'DOLLAR'.

ans =

ASMDOLLAR: [1x1 struct]

fir_filter: [1x1 struct]

C-85

C Objects in Embedded IDE Link™ CC

main: [1x1 struct]

sin_taylor: [1x1 struct]

sin_taylor_vect: [1x1 struct]

This syntax, with the function keyword, returns a structure that contains
the names of all the functions in your project.

Switching to the variable keyword returns a structure that contains the
names of all the variable defined in the tutorial:

list(cc,'variable')

ans =

coeff: [1x1 struct]

ddat: [1x1 struct]

din: [1x1 struct]

dout: [1x1 struct]

ibuf: [1x1 struct]

idat: [1x1 struct]

myString: [1x1 struct]

myStruct: [1x1 struct]

nbuf: [1x1 struct]

ncoeff: [1x1 struct]

obuf: [1x1 struct]

data: [1x1 struct]

min: [1x1 struct]

result: [1x1 struct]

The last keyword, type, returns all the data types defined in the program,
in a structure in your workspace.

list(cc,'type')
ans =

TAG_myStruct: [1x1 struct]
TAG_myEnum: [1x1 struct]

3 To focus on just one variable, the next code example returns the information
about one variable, named idat. Again, the results come back in structure
form. In this case, you use an output argument to store the structure:

C-86

Tutorial — Using function Objects and Function Calls

listI = list(cc,'variable','idat')
listI =

idat: [1x1 struct]

idat is a global variable, as you see from the structure contents.

4 Now take a look at the idat element in structure listI:

listI.idat
ans =

name: 'idat'
isglobal: 0
address: [17468 0]

size: [2 3]
bitsize: 16

type: 'short'

list generates quite a lot of information about the embedded idat
variable. However, an even more useful method is createobj, which
constructs a MATLAB object to represent the C variable — in this case
idat. The object you construct using createobj acquires the properties of
the C variable. Applying the object returned by createobj, you can directly
read the entire variable or access individual elements of the variable, such
as the elements of an array for array variables.

To this point in the tutorial, you have applied all the methods to the
original cc object that you created with ticcs. The cc object represents
communication with a particular digital signal processor in CCS.

For the remainder of this tutorial, you apply methods to many different
objects. In typical object-oriented programming fashion, the action performed
by a method depends on its object. The relevant or processor object is always
the first input argument passed to the method. For example, in the following
section cvar is an object representing the embedded idat variable.

1 Use createobj to construct a MATLAB object that accesses the embedded
variable idat. By assigning the return value to the variable cvar, you have
a handle in MATLAB that represents access to idat on your DSP processor:

C-87

C Objects in Embedded IDE Link™ CC

cvar = createobj(cc,idat)

NUMERIC Object stored in memory:

Symbol name : idat

Address : [17468 0]

Datatype : unsigned short

Wordsize : 16 bits

Address units per value : 2 au

Representation : unsigned

Size : [2]

Total address units : 4 au

Array ordering : row-major

Endianness : little

2 Now you use cvar to get information about idat, or to manipulate the way
MATLAB interprets idat in your workspace. Try the code examples below
to see how some of the data manipulation methods work:

get(cvar,'size') % Size of cvar should be 2-by-3 as defined in

% the DSP application.

ans =

2 3

read(cvar) % Reads the entire embedded matrix into the MATLAB

% workspace.

ans =

-1 508 647

7000 8 619

readhex(cvar) % Reads cvar in hex.

ans =

'FFFF' '1FC' '287'

'1B58' '8' '26B'

readbin(cvar) % Reads cvar in binary.

C-88

Tutorial — Using function Objects and Function Calls

ans =

'1111111111111111' '0000000111111100' '0000001010000111'

'0001101101011000' '0000000000001000' '0000001001101011'

The previous read examples return the entire idat matrix to your
MATLAB workspace. You can read and write selected elements of idat
by indexing into it. Being able to read or write with objects is easier and
more powerful than reading and writing to raw DSP memory, or manually
figuring out the right address offsets for your data arrays.

3 In the next code examples, you use indexing to return specific elements of
embedded variable idat, as accessed by cvar. Note the write method for
changing the contents of cvar from MATLAB:

read(cvar,[2 1]) % Read element specified by row 2, column 1

ans =

7000

write(cvar,[2 1], -7000) % Modifies 7000 to -7000.

read(cvar)

ans =

-1 508 647

-7000 8 619

Use read, write, cast, and convert with Objects
The previous read operations with cvar took raw memory values and
converted them into equivalent MATLAB numeric values. The conversion
that gets applied is controlled by the properties of idat, which were initially
configured in createobj to settings appropriate for your DSP architecture and
C representation. In some cases, changing these default conversion properties
can help your development process. Several properties of the object, such
as endianness, arrayorder, and size, can be directly modified using set.
Methods such as convert and cast, which adjust multiple object properties
simultaneously, enable you to make more complex changes from MATLAB.

C-89

C Objects in Embedded IDE Link™ CC

1 To introduce the idea of changing the representation in MATLAB of an
object, try the following set function on cvar, which changes the way
MATLAB interprets idat. After the change, check that cvar is indeed
smaller:

set(cvar,'size',[2]) % Reduce size of 'idat' to first 2 elements.

read(cvar)

ans =

-1 508

2 Now change the data type of cvar using cast:

uicvar = cast(cvar,'unsigned short')

NUMERIC Object stored in memory:

Symbol name : idat

Address : [17468 0]

Datatype : unsigned short

Wordsize : 16 bits

Address units per value : 2 au

Representation : unsigned

Size : [2]

Total address units : 4 au

Array ordering : row-major

Endianness : little

Using cast in this way changes the representation of cvar from double
precision to unsigned short. As a result, MATLAB interprets the first
value in cvar as the unsigned equivalent of -1, as shown when you read the
new uicvar object. And do note that uicvar is a new object, not an alias or
handle to cvar, but fully independent of cvar.

read(uicvar)
ans =

65535 508

C-90

Tutorial — Using function Objects and Function Calls

In the next step you meet the method convert, which changes the data
type of the specified object, rather than creating a new object with the
new data type.

3 For the second data type conversion method, use convert with cvar to
change the data type for idat in MATLAB:

convert(cvar,'unsigned short')

NUMERIC Object stored in memory:
Symbol name : idat
Address : [17468 0]
Datatype : unsigned short
Wordsize : 16 bits
Address units per value : 2 au
Representation : unsigned
Size : [2]
Total address units : 4 au
Array ordering : row-major
Endianness : little

read(cvar)
ans =

65535 508

Note that the embedded object cvar has the new data type and size; it is
not a new embedded object. Writing this version of cvar back to the DSP
memory would cause idat to take on the new data type definition.

Embedded DSP variables such as strings, structures, bitfields, enumerated
types, and pointers can be manipulated in exactly the same way. The
following operations demonstrate manipulations on structures, strings
and enumerated types. In particular, note the method getmember, which
extracts one field from a structure as a new MATLAB object in your
workspace.

4 To demonstrate getmember, you need an embedded object that accesses
a structure in memory. In the following code, you replace your current cvar
object with one that represents a structure named myStruct, an embedded
C structure in the symbol table for the tutorial program:

C-91

C Objects in Embedded IDE Link™ CC

cvar = createobj(cc,'myStruct')
STRUCTURE Object stored in memory:

Symbol name : myStruct
Address : [17440 0]
Address units per value : 28 au
Size : [1]
Total Address Units : 28 au
Array ordering : row-major
Members : 'iy', 'iz'

read(cvar)
ans =

iy: [2x3 double]
iz: 'MatlabLink'

myStruct is a fairly complex structure containing a variety of data types,
including enumerated data and strings. Because you use the elements of
myStruct in the next steps, carefully review it so you see what it contains
and how.

5 In this step you read, write, and manipulate the elements of myStruct. As
you enter each command, try to determine what you expect to get back
from MATLAB. Notice that we ask you to perform read operations between
other operations. read lets you see the changes you make in DSP memory
when you write variables to CCS, not just in MATLAB:

write(cvar,'iz', 'Simulink')

cfield = getmember(cvar,'iz') % Extract iz field from cvar

ENUM Object stored in memory:

Symbol name : iz

Address : [17464 0]

Wordsize : 32 bits

Address units per value : 4 au

Representation : signed

Size : [1]

Total address units : 4 au

Array ordering : row-major

Endianness : little

C-92

Tutorial — Using function Objects and Function Calls

Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedprocessorC6x=4

write(cfield,4) % Write to same cvar enumerated variable by value

read(cvar)

ans =

iy: [2x3 double]

iz: 'EmbeddedprocessorC6x'

cstring = createobj(cc,'myString') % cstring represents an

% embedded C structure

STRING Object stored in memory:

Symbol name : myString

Address : [17512 0]

Wordsize : 8 bits

Address units per value : 1 au

Representation : signed

Size : [29]

Total address units : 29 au

Array ordering : row-major

Endianness : little

Char Conversion Type : ASCII

read(cstring)

ans =

Treat me like an ANSI String

write(cstring,7,'ME')

read(cstring)

ans =

Treat ME like an ANSI String

write(cstring,1,127) % Set first location to numeric value 127

% (nonprinting ASCII character)

readnumeric(cstring) % Read cstring as equivalent numeric values

ans =

C-93

C Objects in Embedded IDE Link™ CC

Columns 1 through 13

127 114 101 97 116 32 77 69 32 108 105 107 101

Columns 14 through 26

32 97 110 32 65 78 83 73 32 83 116 114 105

Columns 27 through 29

110 103 0

Construct a function Object
In step 12 you performed a number of operations on myStruct in your
workspace, and between MATLAB and CCS.

Manipulating embedded data is useful, but eventually you must contend
with embedded functions, not just variables. To facilitate your debugging
and verification work, Embedded IDE Link CC provides objects for accessing
embedded functions directly from MATLAB. This permits you to execute any
C-callable function on your processor from MATLAB for hardware-in-the-loop
functionality.

The first step in running embedded functions from MATLAB is to make
function objects by applying the (now familiar) createobj on cc. Just like
variables, use list to retrieve information about functions that you access.

The following steps create an object listI that you use to access the
embedded function sin_taylor.

1 Get information about an embedded function, then create an object to
access the function. Your processor function is sin_taylor:

listI =

sin_taylor: [1x1 struct]

listI.sin_taylor

ans =

C-94

Tutorial — Using function Objects and Function Calls

name: 'sin_taylor'

filename: 'hiltut.c'

uclass: 'function'

islibfunc: 0

address: [1x1 struct]

linepos: [86 116]

funcvar: {'a1' 'a2' 'a3' 'acc' 'x' 'xpow'}

cfunc = cc.createobj('sin_taylor') % Create function object

FUNCTION Object

Function name : sin_taylor

File found : hiltut.c

Start address : [12328 0]

All variables : a1, a2, a3, acc, x, xpow

Input variables : x

Return type : short

At this point, you are ready to run function object listI.

Embedded function sin_taylor computes a fixed-point sine function using
four terms of the Taylor series representation. Let’s use your new object
cfunc to verify the embedded function. From the information returned
by list, you know that the input fixed-point data format is Q2.13 and
the output is Q1.14.

2 To run sin_taylor, you provide a number between (-π) and (π) to use for
the sine calculation. Enter a value as shown in this code:

userval = pi/2; % Use any value between -pi and pi.

3 Now run sin_taylor using userval and the cfunc object:

sintf = run(cfunc,'x',(userval*2^13)/2^14));

The numeric values in the command provide scaling for the binary point in
userval to prevent the output (sintf) from saturating in Q1.14 format.

C-95

C Objects in Embedded IDE Link™ CC

The returned values from the MATLAB sin function and sin_taylor
should match quite closely.

Use Methods That Work with Function Objects
In some cases you may find it useful to alter function object properties that
were initialized to reflect your DSP source code. Several function object
properties, like returntype, savedregs, and timeout, can be set using set.
For applying other complex properties, Embedded IDE Link CC offers the
cast and convert methods.

At times you might like to change the properties of an object while keeping
the original object unchanged, and, if the object is a function, apply the new
properties to a copy of the function. The method copy does just that. In the
following steps of the tutorial, you create a copy of cfunc and use the copy for
program debugging purposes.

1 Create the copy of your cfunc object, and get the properties for it:

cfunc_copy = copy(cfunc)

FUNCTION Object

Function name : sin_taylor

File found : hiltut.c

Start address : [12328 0]

All variables : a1, a2, a3, acc, x, xpow

Input variables : x

Return type : short

getprop(cfunc_copy,'outputvar') % Get the function return type

NUMERIC Object stored in register(s):

Symbol name :

Register : A4

Datatype : Unknown

Wordsize : 16 bits

Register units per value : 1 ru

Representation : signed

Bit padding (post) : 16

Size : [1]

Total register units : 1 ru

Array ordering : row-major

C-96

Tutorial — Using function Objects and Function Calls

As you review the information returned by getprop, notice the difference in
the wordsize property between cfunc and cfunc_copy.

2 With the copy of cfunc in your workspace, convert the output data type to
int8 from Q1.14. Recall that int8 is both a MATLAB data type and a C
native data type:

convert(cfunc_copy.outputvar, 'int8')

Property outputvar holds the data type specification for the returned value
from sin_taylor.

3 Entering the following command at the prompt

int8_OUT = run(cfunc_copy,'x',(userval*2^13)/2^14))

executes the copy of the sin_taylor function that you modified to have the
output data type int8 instead of the original output data type.

Function calls support different types of DSP variables, such as strings,
structures, bitfields, enumerated types, and pointers. In the next examples,
you create an object that accesses sin_taylor_vect, a vectorized version of
sin_taylor.

To prepare to run sin_taylor_vect, you create input and output buffer
objects, each containing 10 memory locations; you supply the start addresses
of both buffers to the function object; and you run the function from
MATLAB with the run method. With vectors needed for its input and
output, sin_taylor_vect uses buffers to store the data in both directions.
As a function that used one input value and returned one output value,
sin_taylor did not require buffers.

4 Enter the following commands to construct objects that access
sin_taylor_vect and input and output buffers:

cfunc_vec = cc.createobj('sin_taylor_vect') % Yet another object

ibufobj = createobj(cc,'ibuf'); % Create input buffer object

obufobj = createobj(cc,'obuf'); % Create output buffer object

C-97

C Objects in Embedded IDE Link™ CC

5 With the buffer objects in place, make the input data vector and write the
data to your input buffer:

inputdata = [-pi:0.1:pi]; % Input data to write to the DSP processor

write(ibufobj,int16(inputdata*2^13)); % Write data to buffer with

% scaling

write(obufobj,int16(zeros(1,63))); % Set output buffer to zeros

read(ibufobj) % (optional) % Verify data initialization

ans =

Columns 1 through 6

-25735 -24916 -24097 -23278 -22459 -21639

Columns 7 through 12

-20820 -20001 -19182 -18363 -17543 -16724

Columns 13 through 18

-15905 -15086 -14267 -13447 -12628 -11809

Columns 19 through 24

-10990 -10171 -9351 -8532 -7713 -6894

Columns 25 through 30

-6075 -5255 -4436 -3617 -2798 -1979

Columns 31 through 36

-1159 -340 478 1297 2116 2936

Columns 37 through 42

3755 4574 5393 6212 7032 7851

Columns 43 through 48

8670 9489 10308 11128 11947 12766

C-98

Tutorial — Using function Objects and Function Calls

Columns 49 through 54

13585 14404 15224 16043 16862 17681

Columns 55 through 60

18500 19320 20139 20958 21777 22596

Columns 61 through 63

23416 24235 25054

read(obufobj) % (optional) Should be zeros

ans =

Columns 1 through 13

0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 14 through 26

0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 27 through 39

0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 40 through 52

0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 53 through 63

0 0 0 0 0 0 0 0 0 0 0

6 You’ve done all the preparation — now run sin_taylor_vect. Remember
that the object you named cfunc_vec accesses sin_taylor_vect:

outputAddress = run(cfunc_vec,'x',ibufobj.address(1),'y',...

C-99

C Objects in Embedded IDE Link™ CC

obufobj.address(1),'npts',63);

Notice how the input and output parameters correspond to the prototype
of the function. Also notice how input parameters are supplied in pairs —
parameter name/parameter value.

7 You need to use a new method, deref, to read the output data buffer. The
value in object property outputvar is a pointer. To get to the actual data,
you dereference the pointer (just as you do in C, because you are working in
C). The next code does the dereferencing for you:

outputdataAddress = deref(cfunc_vec.outputvar);

outputdataAddress.size = 63; % Need to read the next 63

% addresses (obufobj)

outputdata = read(outputdataAddress)/2^14; % Get output scaling

%for binary point

8 If you are interested in seeing what you have done, the following
code plots the results from running sin_taylor_vect on your input
data set. Comparing the output from the MATLAB sin function and
sin_taylor_vect gives you an idea of how your algorithm performs on
your DSP processor:

subplot(2,1,1)

plot(inputdata,outputdata)

title('Result of sin(inputdata) on the DSP')

a = gca;

set(get(a,'title'),'fontsize',10);

set(a,'fontsize',8);

set(a,'fontweight','light') ;

subplot(2,1,2)

plot(inputdata,sin(inputdata))

title('Result of sin(inputdata) in MATLAB')

b = gca;

set(get(b,'title'),'fontsize',10);

set(b,'fontsize',8);

set(b,'fontweight','light')

C-100

Tutorial — Using function Objects and Function Calls

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1
Result of sin(inputdata) on the DSP

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1
Result of sin(inputdata) in MATLAB

Among other things, this example plotting technique might be handy for
other plotting tasks.

Construct Different Objects and Work with Them
In the previous tutorial section, you created an object that accessed a
C function and ran the function in your project from MATLAB. Embedded
IDE Link CC also supports calling library functions — those functions in your
project that are precompiled and callable directly from your C program — in
your project from MATLAB. Library functions do not build when you build
your project in CCS or from MATLAB and therefore do not have the function
prototype available that compiled functions provide and that MATLAB needs
to get the information about the function.

The difference between using function objects with library functions and
regular C functions is you must use the method declare with library functions

C-101

C Objects in Embedded IDE Link™ CC

to provide the function declaration for the object to MATLAB. Because CCS
cannot provide full information about library functions, MATLAB gets its
library function information from your declare operation. The declare
method accepts C declaration strings for any functions.

In this part of the tutorial, you create an object to access the fir_filter
filter library function, using declare to supply the function declaration to
MATLAB. Then you use the object to run the function in CCS and on your
processor. To introduce the concepts needed to work with typedefs you might
have defined in your projects, you use add in this process to define some
typedefs in MATLAB to include in your cc object. Your additional typedefs
remain available as long as the cc object exists for this project.

1 Start this section by creating and plotting the frequency response for
a lowpass FIR filter in MATLAB. Use fir1 from the Signal Processing
Toolbox to create the FIR filter. Later in this section you compare the
results of filtering with this filter to the results of filtering with an FIR
filter function (fir_filter) on your processor — they should match
closely, within the differences caused by the filter coefficients being stored
on the processor with lower precision:

n = 10;

wb1 = 0.3;

bcoeff = fir1(n,wb1);

[sco sw]=freqz(bcoeff,1);

scodb = 20*log10(abs(sco));

swdb = sw./pi;

h = figure;

plot(swdb,scodb);

hold on; grid on; % Save the figure to add another later.

nfrm = 128;

cscaling = 2^15;

ncoeff = length(bcoeff);

To plot the filter magnitude response, you could have used the Filter
Visualization Tool (FVTool), as shown here:

fvtool(bcoeff,1);

C-102

Tutorial — Using function Objects and Function Calls

Using FVTool gives you access to a full range of analyses for your lowpass
filter. Plotting the magnitude response in the more conventional way
allows you to compare the results of running the same FIR filter on your
processor that you do later in this tutorial.

2 Now create handles to three filter parameters in CCS — coeff (filter
coefficients), nbuf (input buffer), and ncoeff (number of filter coefficients;
equal to [filter order + 1]):

coeff = createobj(cc,'coeff');

nbuf = createobj(cc,'nbuf');

ncoeff = createobj(cc,'ncoeff');

3 You need input and output objects so create them:

din = createobj(cc,'din');
dout = createobj(cc,'dout');

4 To run the filter function, you create and scale input data for the function
to process. The following code creates an input data set with scaling:

datain = randn(nfrm,1);

glim = max([abs(max(datain)) abs(min(datain))]);

dscale = 2^15/(glim*0.99);

idin =int16(dscale*datain);

5 Provide data to your processor to initialize the filtering function
(fir_filter) by writing the required input data and filter specifications
to the processor:

write(coeff,int16(cscaling.*bcoeff));
write(din,idin);
write(ncoeff,n);
write(nbuf,nfrm);

After you have initialized your input data and written the data to the
processor, you are ready to run the library function fir_filter in the
tutorial project.

6 First create an object to access fir_filter:

C-103

C Objects in Embedded IDE Link™ CC

ff = createobj(cc,'fir_filter'); % Expect a warning message

Recall from earlier comments in this tutorial that library functions behave
slightly differently from compiled C code functions. When you try to
create a function object to access a library function, you get a warning
message telling you to use declare to supply the function declaration. For
library functions you supply the function declaration to MATLAB using the
declare method. In spite of the warning message, MATLAB creates ff
with default property values.

7 Use declare to provide the function declaration for fir_filter to
MATLAB:

declare(ff,'decl','short fir_filter (short *x, short *h,...

short *r,short **dbuffer, unsigned short nh, unsigned short nx)');

8 Add a custom type definition (C typedef) INT16 to the type definitions in
cc. Use list to see the available type definitions:

add(cc.type,'INT16','int16');

list(cc.type) % Display existing defined types. Includes INT16.

Defined types : Void, Float, Double, Long, Int, Short, Char, INT16

9 Running the function requires one more object — a pointer to a buffer. Use
createobj to create the object that accesses dbptr in the symbol table
for your project:

dbptr = createobj(cc,'dbptr');

10 Now run fir_filter from MATLAB. Position the program counter to the
beginning of the function, set the input argument values x, r, h, nh, n,
nr, and nfrm, and run ff:

goto(ff,'x',din.address(1),'h',coeff.address(1),...

'r',dout.address(1),'nh',n,'nr',nfrm);

execute(ff); %

You took advantage of the ability to use goto to both position the PC and set
values for the fir_filter function input arguments. This feature can be
convenient for developing and testing algorithms with function call work.

C-104

Tutorial — Using function Objects and Function Calls

11 After the filtering process finishes, use read to get the results back from
CCS to MATLAB:

idout = read(dout);

12 Plot idout to see the magnitude response of the FIR filter on your processor:

[sout wsd]= pwelch(double(idout));

sin = pwelch(double(idin));

runningsum = (sout./sin);

wplotdb = 10*log10(runningsum/1);

wsdn = wsd/pi;

plot(wsdn,wplotdb,'r');

title('processor Generated Filter Response');

Compare this response to the magnitude response from FVTool you created
earlier. Your processor stores the filter coefficients slightly differently from
MATLAB, so the results are not identical — the filters are not quite the
same.

C-105

C Objects in Embedded IDE Link™ CC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
MATLAB Response Compared to Target Response

Normalized Frequency

Close The Tutorial and Clean Up
Finally, the objects created during this tutorial have COM handles to CCS.
Until you delete these handles, the CCS process remains in memory. Closing
MATLAB removes these handles, but in some cases you may find it useful to
delete them without closing MATLAB. Use clear to remove objects from your
MATLAB workspace and delete the handles that objects contain. clear all
deletes everything in your workspace. To retain your MATLAB workspace
contents while removing specific objects, use clear on the objects to remove,
such as those derived from your ticcs object, including all embedded objects
returned by createobj.

In addition the tutorial performs a close operation to remove the tutorial
project from CCS.

1 First close your project file from MATLAB by entering

C-106

Tutorial — Using function Objects and Function Calls

close(cc,'projfile','project') % Clean-up CCS by closing the...

%project file.

2 To remove the objects you created during the tutorial, enter

.clear cc cvar cfield uicvar cstring ibufobj obufobj cfunc
cfunc_vec cfunc_copy

at the command line.

If you do not care about keeping other variables and objects that were in
your MATLAB workspace when you started this tutorial, use clear all
to remove everything from your workspace — objects, variables, and more
— in one operation.

C-107

C Objects in Embedded IDE Link™ CC

Managing Custom Data Types with the Data Type Manager
Using custom data types, called typedefs (using the C keyword typedef), is
one of the complications you encounter when you use hardware-in-the-loop
(HIL) to run a function in your project from MATLAB. Because MATLAB
does not recognize custom type definitions you use in your projects, it cannot
interpret data that you define in your project code with the typedef keyword,
or use as arguments in your function prototype (declaration).

To allow you to use functions that include custom type definitions in function
calls, Embedded IDE Link CC offers the Data Type Manager (DTM), a tool
for defining custom type definitions to MATLAB. Using options in the DTM,
you define one or more custom data types for a project and use them in the
project. Or you define your custom data types and save them to use in many
projects. This second feature is particularly useful when you use the same
custom data types in many projects. Rather than redefining your custom
types for each new project or function, you reload the types from an earlier
project to use them again.

As programmers, usually you use typedefs for one or more of a few reasons:

• Make your code more accessible by providing more information about the
variable(s)

• Create a Boolean data type that C does not provide

• Define structures in your programs

• Define nonstandard data types

The DTM lets you define all of these things in the MATLAB context so your
C function that uses typedefs works with your MATLAB command line
functions. For reference information about the DTM, go to datatypemanager.

Entering

datatypemanager(cc)

C-108

Managing Custom Data Types with the Data Type Manager

at the MATLAB command line opens the DTM, with the Data Type Manager
dialog box shown here:

When the DTM opens, a variety of information and options displays in the
Data Type Manager dialog box:

• Typedef name (Equivalent data type)— provides a list of default data
types. When you create a typedef, you see it added to this list.

The lowercase versions of the data types appear because MATLAB does
not recognize the initial capital versions automatically. In the data type
list the project data type with the initial capital letter is mapped to the
lowercase MATLAB data type.

• Add typedef— opens the Add Typedef dialog box so you can add one or
more typedefs to your object. Your added typedef appears on the Typedef
name (Equivalent data type) list and is added to your ticcs object. Also,

C-109

C Objects in Embedded IDE Link™ CC

when you pass the cc object to the DTM, and then add a typedef, the
command

cc.type

returns the list of data types in the type property of your cc object,
including the typedefs you added.

• Remove typedef— removes a selected typedef from the Typedef name
(Equivalent data type) list.

• Load session — loads a previously saved session so you can use the
typedefs you defined earlier without reentering them.

• Refresh list — updates the list in Typedefs name (Equivalent data
type). Refreshing the list ensures the contents are current. If you changed
your project data type content or loaded a new project, this updates the
type definitions in the DTM.

• Close— closes the DTM and prompts you to save the session information.
This is the only way to save your work in this dialog box. Saving the session
creates an M-file you can reload into the DTM later.

Adding Custom Type Definitions to MATLAB
Every custom type definition in your project must appear on the Typedef
name (Equivalent data type) list for MATLAB to understand the data
types involved. To add entries the list, use the Add typedef option to identify
your type definition with a data type that MATLAB recognizes. When you
click Add typedef, the List of Known Data Types dialog box opens,
displaying the data types currently recognized by MATLAB. To make finding
a specific type easier, the known data types are grouped into categories:

• MATLAB types

• TI C types

• TI fixed point types

• Struct, union, enum types

• Other (e.g. pointers, typedefs)

C-110

Managing Custom Data Types with the Data Type Manager

Each custom type definition added in the DTM becomes part of the ticcs
object passed to the DTM in datatypemanager(objectname). The list of data
types in the object, both default and custom, is available by entering

objectname.type

at the command prompt.

The same list appears in the DTM on the Typedef name (Equivalent
data type)

MATLAB uses the type definitions when you run a function residing on your
processor from MATLAB.

To Add a Typedef to MATLAB
You use the DTM to add typedefs for MATLAB to recognize, such as:

• Typedefs that use a MATLAB data type in the type definition

• Typedefs that use an enumerated or union data type in the type definition

• Typedefs that use a structure in the type definition

C-111

C Objects in Embedded IDE Link™ CC

• Typedefs that use pointers or typedefs in the type definition

To define custom data types that use structs, enums, or unions from a project,
the project must be loaded on the processor before you add the custom type
definitions. Either load the project and .out file before you start the DTM, or
use the Load Program option in the DTM to load the .out file.

Note When the load process works, you see the name of the file you loaded in
Loaded program. Otherwise you get an error message that the load failed.

Only programs that you load from this dialog box appear in Program
loaded. Programs that are already loaded on your processor do not appear
in the Loaded program option. MATLAB cannot determine what program
you have loaded.

You need to know the custom definitions you used so you can add them in
the DTM. Use the options for list to verify whether you loaded a .out file
on the processor.

Follow the example procedure to add type definitions to your project. To go
directly to a specific typedef example, click one of these links:

• “Add a MATLAB type definition” on page C-114

• “Add an enumerated type definition” on page C-115

• “Add a structure typedef” on page C-116

Create an object and load a program.

1 Create a ticcs object.

cc=ticcs;

2 Load a program on your processor. For example, the MATLAB command

load(cc,'c6711dskwdnoisf_c6000_rtwD\c6711dskwdnoisf.out');

C-112

Managing Custom Data Types with the Data Type Manager

loads the executable file from the model c6711dskwdnois.mdl on the
processor.

3 Start the DTM with the object you created.

datatypemanager(cc);

The DTM starts, showing the default data types.

C-113

C Objects in Embedded IDE Link™ CC

4 Click Add typedef to add your first custom data type. The List of Known
Data Types dialog box appears as shown.

Add a MATLAB type definition.

5 In Typedef, enter the name of the typedef as you defined it in your code.
For this example, use typedef1_matlab.

C-114

Managing Custom Data Types with the Data Type Manager

6 Select an appropriate MATLAB data type from the MATLAB Types in
Known Types. uint16 is the choice. Choose the data type that best
represents the data type in your code.

7 Click OK to close the dialog box and add the new type definition to the
Typedef name list.

Add an enumerated type definition.

8 Click Add Typedef.

9 From the Known Types list, select Struct, Enum, Union Types.

10 To define your type definition, give it a name in Typedef, such as
typedef_enum

C-115

C Objects in Embedded IDE Link™ CC

11 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_enum. The enum_TAG_myEnum
choice fills the enumerated type chosen.

12 Click OK to close the dialog box and add typedef_enum to your defined
types that MATLAB recognizes.

Add a structure typedef.

13 Click Add Typedef.

14 From the Known Types list, select Struct, Enum, Union Types.

15 To define your type definition, give it a name in Typedef, such as
typedef_struct.

16 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_struct. This example uses
struct_TAG_mySTruct.

17 Click OK to close the dialog box and add the new data type to the list.

C-116

Managing Custom Data Types with the Data Type Manager

After you close the dialog box, the Typedef name list in the Data Type
Manager looks like this.

To check the data types in the cc object, enter

cc.type

which returns

Defined types : Void, Float, Double, Long, Int, Short, Char,

typedef1_matlab, typedef_enum, typedef struct

If your function declaration uses any of the types listed by cc.type, MATLAB
can interpret the data correctly. For example, MATLAB interprets the
typedef1_matlab data type as uint16.

C-117

C Objects in Embedded IDE Link™ CC

Clicking Close in the DTM prompts you to save your session. Saving the
session creates an M-file that contains operations that create your final list of
data types, identical to the data types in the Typedef name list.

The first line of the M-file is a function definition, where the name of the
function is the filename of the session you saved. In the stored M-file, you find
a function that includes add and remove operations that replicate the add and
remove typedef operations you used to create the list of known data types in
the DTM. For each time you added a typedef in the DTM, the M-file contains
an add command that adds the new type definition to the type property of
the cc object. When you removed a data type, you created an equivalent
clear command that removes the specified data type from the type property
of the cc object.

An interesting note — all the operations you performed adding and removing
data types in the DTM during the session are stored in the generated M-file
that you save. This has the effect of storing mistakes you made while creating
or removing type definitions. One consequence of storing mistakes is when
you load your saved session into the DTM, you see the same error messages
you saw, if any, when you created the data types in the session. You might
find this disconcerting.

C-118

Reference for the Properties of Embedded Objects

Reference for the Properties of Embedded Objects

In this section...

“Property Reference Format and Contents” on page C-119
“Functions” on page C-120

This section presents details of the properties that apply to the embedded
objects in Embedded IDE Link CC. The reference information contained can
help you learn about using the links and objects.

Property Reference Format and Contents
Ordered alphabetically by property name, references include

• Property name heading

• Description

• Property characteristics, including

- Data type

- Default value

- Read/Write status

• Range of valid property values

• One or more examples using the property

• Referrals to related properties where appropriate

Some reference pages do not include all the features listed; in particular,
some pages may not provide examples or the range of valid property values
or referrals.

C-119

C Objects in Embedded IDE Link™ CC

Functions

address

Description. Reports the starting address of the symbol the object references
— either a memory address or a register name. In some cases the address
is in [Offset Page] format when the processor supports memory pages and
the address is a location in memory.

Characteristics. Either a numeric value (for memory locations) or
alphanumeric value (for register locations), this is a writable value.

If you change the offset and page values for the property, the object points to a
different location in memory. Changing the address property does not affect
the location of the symbol.

Range. Covers the entire range of addresses available on the processor.

apiversion

Description. Contains a string that defines the version of the CCS
application program interface (API) being used by the link object.

Characteristics. A string value. The first entry in the square brackets is the
major version number and the second entry is the minor revision number.
You cannot set this value — it is read only.

Range. Any ASCII characters that make up the name and version number of
the API.

Examples. Create a link object and use get to review the object properties.
For this object, the API version returns 1.2 and apiversion is [1 2]. The
API version may not be the same as the version of CCS:

cc=ticcs

TICCS Object:
API version : 1.2
Processor type : TMS320C6711

C-120

Reference for the Properties of Embedded Objects

Processor name : CPU_1
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

get(cc.apiversion)
apiversion: [1 2]

arrayorder

Description. Specifies the manner in which the object interprets data stored
linearly in memory, whether as rows or columns of an array.

Characteristics. A string with one of two possible values — row-major
(C style interpretation) or col-major (normal MATLAB ordering).

Range. Allowed strings are row-major and column-major.

Examples. When you have nine values in memory, such as 1, 2,..., 9, the
arrayorder property value determines how to build an array from the values:

• In row-major order, the values form the 3-by-3 array by filling the array
row by row and left to right:

1 2 3
4 5 6
7 8 9

• In column-major order, the values form the 3-by-3 array by filling the array
column by column and top to bottom:

1 4 7
2 5 8
3 6 9

You can increase the number of array dimensions without limit.

C-121

C Objects in Embedded IDE Link™ CC

binarypt

Description. Specifies the location of the binary point in a value. To interpret
the actual value of a value in memory, you need both the data type and binary
point to convert correctly from the binary or hexadecimal representation to
decimal. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.
Because the object uses double-precision representation, the word size and
binary point form the basis for simulating fixed-point values.

Characteristics. A positive or negative integer.

Range. binarypt ranges from 0 to the word size. You can use negative
binary point locations and binary point locations larger than the word size, to
the limit of double-precision representation.

Referrals. See also wordsize.

bitsperstorageunit

Description. Reports the smallest number of bits per address location
(addressable unit) on the processor. Memory locations and registers may
have different values on a processor. Different processors can use different
values as well.

Characteristics. An integer.

Range. Depends on the processor. Usually 8, 16, or 32 bits.

Referrals. See also numberofstorageunits and storageunitspervalue.

boardnum

Description. Specifies the board or simulator with which the link object
communicates.

Characteristics. An integer. This is a read-only value determined when you
create link objects and select your processor.

C-122

Reference for the Properties of Embedded Objects

Range. Integer values ranging from 0 for the first board up to the number
of boards that CCS recognizes configured on your machine. Note that both
simulators and hardware count as boards.

ccsappexe

Description. Reports the full directory path to the CCS executable.

Characteristics. A string that shows the path to your CCS installation. You
cannot change this string except by moving your CCS storage location.

Examples. If your CCS installation is in a folder called Applications on
your D: drive, you might see a string such as

'D:\Applications\ti\cc\bin\'

for the ccsappexe property value when you use the command

cc.ccsappexe

at the MATLAB prompt.

charconversion

Description. Specify the character set that read and write use to interpret
data in memory or when transferring data to processor memory. When you
set the charconversion property, you are telling read or write to interpret
the data, either in MATLAB or on the processor, as though they represent
values in the specified character set.

For read, charconversion tells MATLAB to return the values from memory
as characters from the specified data set. For write, charconversion tells
MATLAB to write the data to processor memory as the numeric equivalents
of the specified character set. Recall that all data in memory is numeric.
charconversion defines how the numeric values in memory become
characters in MATLAB. And how characters in MATLAB become numeric
values on the processor.

C-123

C Objects in Embedded IDE Link™ CC

Characteristics. This is a string and should be entered as a string in single
quotation marks.

Range. The only valid entry for charconversion is ascii.

endianness

Description. Specifies whether to interpret the bit pattern in memory in
little-endian or big-endian format. Big-endian format assumes the least
significant bit (LSB) is last in a word that spans more than one addressable
unit in memory; little-endian assumes the LSB is first in a word that spans
multiple addressable units.

Characteristics. Property values are strings, either little or big. You
can change the state within the object, which changes the way MATLAB
interprets the bits stored in memory on your processor.

Range. You have two options for endianness — little or big.

Examples. When you have a variable in memory, such as ddat from the link
object tutorial, creating a numeric object to access ddat shows you whether
ddat is big endian or little endian:

ddat = createobj(cc,'ddat')

NUMERIC Object

Symbol Name : ddat

Address : [40072 0]

Wordsize : 64 bits

Address Units per value : 8 AU

Representation : float

Binary point position : 0

Size : [4]

Total address units : 32 AU

Array ordering : row-major

Endianness : little

get(ddat)

address: [40072 0]

C-124

Reference for the Properties of Embedded Objects

bitsperstorageunit: 8

numberofstorageunits: 32

link: [1x1 ticcs]

timeout: 10

name: 'ddat'

wordsize: 64

storageunitspervalue: 8

size: 4

endianness: 'little'

arrayorder: 'row-major'

prepad: 0

postpad: 0

represent: 'float'

binarypt: 0

filename

Description. Specifies the name of the file in the project that contains the
function declaration. When you create an object that accesses a function,
MATLAB returns the name of the file in filename. When the processor
function is a library function, filename is empty.

Characteristics. A string that contains the full path name to a file.

Range. Any valid filename and directory path.

inputnames

Description. Defines and contains the names of input arguments to a
function in your project. For library functions, inputnames is empty until you
use declare or getinput to define the input arguments for the function.

Characteristics. A character string in the form of an mxArray.

Range. Any valid C variable name string.

C-125

C Objects in Embedded IDE Link™ CC

inputvars

Description. The objects that represent each input argument to a function
when you create a function object to access a specific function. When you
create a new function object, MATLAB creates appropriate objects to access
each input argument to the function.

Characteristics. An object that represents the input argument type, such as
numeric or pointer. These are handles to objects.

Range. Any valid object in Embedded IDE Link CC.

label

Description. Contains the names of the fields in an enumerated object or
memory location.

Characteristics. ASCII characters of any type. Contains as many strings as
there are enumerated entries, entered as a cell array of strings.

Examples. Using the cfield object created in the link tutorial (run
ccstutorial at the MATLAB prompt), you see the following when you
display the object:

cfield

ENUM Object

Symbol Name : iz

Address : [40056 0]

Wordsize : 32 bits

Address Units per value : 4 AU

Representation : signed

Binary point position : 0

Size : [1]

Total address units : 4 AU

Array ordering : row-major

Endianness : little

Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MATLABLink=3, EmbeddedprocessorC6x=4

C-126

Reference for the Properties of Embedded Objects

The labels are MATLAB, Simulink, SignalToolbox, MATLABLink, and
EmbeddedprocessorC6x. In this case, label is {1x5 cell}.

Referrals. See also property value.

link

Description. Specifies the link object you used when you created the
embedded object.

Characteristics. A 1-by-1 array containing the name of the link object
associated with the symbol table that holds the symbol.

Examples. In the tutorial, you created a numeric object named uicvar,
using cast with the numeric object cvar. To create cvar, you used link object
cc to determine the symbol table and project or processor. When you view the
properties of uicvar, you see the property link listing the link object as ticcs:

get(uicvar)

address: [40060 0]

bitsperstorageunit: 8

numberofstorageunits: 4

link: [1x1 ticcs]

timeout: 10

name: 'idat'

wordsize: 16

storageunitspervalue: 2

size: 2

endianness: 'little'

arrayorder: 'row-major'

prepad: 0

postpad: 0

represent: 'unsigned'

binarypt: 0

Delving more deeply into the property link reveals the properties of the link
object:

uicvar.link

C-127

C Objects in Embedded IDE Link™ CC

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

Referrals. See also createobj.

member

Description. This identifies a MATLAB structure that holds the entry for
each C member in the structure accessed by the object.

Characteristics. A MATLAB array containing

• Array type

• Array dimensions

• Data associated with this array

• If numeric, whether the variable is real or complex

• If a structure or object, the number of fields and field names

Examples. If you have a structure in DSP memory declared like the
following structure

struct TAG_myStruct {

int iy[2][3];

myEnum iz;

} myStruct = { {{1,2,3},{4,-5,6}}, MatlabLink};

the member property of an object that accesses myStruct, might look like

get(cvar)
name: 'myStruct'

C-128

Reference for the Properties of Embedded Objects

member: [1x1 ccs.containerobj]
membname: {'iy' 'iz'}

memboffset: [0 24]
address: [40032 0]

storageunitspervalue: 28
size: 1

numberofstorageunits: 28
arrayorder: 'row-major'

where member is a 1-by-1 MATLAB array with a handle to the object that
contains it named ccs.containerobj.

membname

Description. Contains the names of the fields in a structure or union
accessed by a structure object.

Characteristics. membname is one or more strings providing the names of the
structure fields, formatted as a cell array.

Range. Strings in membname contain any valid ASCII characters that might
be found in a C structure field.

Examples. In CCS, if you had the following structure in your project code

struct tag {
int _a;
int B;
int b;
} var;

you could create a structure object, var, that accesses the structure. Using
get with var lets you review the names of the fields in the structure by
looking at the membname property for var:

var = createobj(cc,'var')
get(var,'membname')
'a' 'B' 'b'

C-129

C Objects in Embedded IDE Link™ CC

memboffset

Description. While this is not directly useful to you, the values in the vector
specify how far, in memory in addressable units, each field in a structure is
from the starting address for the structure.

Characteristics. Any numeric or alphanumeric value that represents a valid
address or register location on the processor. The vector contains one element
for each field in the structure, representing the offset to that field in memory.

Range. A vector containing M element, where M is the number of fields in
the structure. The second element in the vector is the offset to the second
field in the structure, the third element in the vector is the offset to the third
field, and so on until the final element is the offset to the final field. The first
element in the memoffset vector is always 0, because this represents the offset
to the first element in the structure, which is where the structure begins.

Examples. When you are working with structure objects, the property
memoffset tells you how far one structure field is from another in memory:

cvar = createobj(cc,'myStruct')

STRUCTURE Object:

Symbol Name : myStruct

Address : [40032 0]

Address Units per value : 28 AU

Size : [1]

Total Address Units : 28 AU

Array ordering : row-major

Members : 'iy', 'iz'

read(cvar)

ans =

iy: [2x3 double]

iz: 'MatlabLink'

get(cvar)

name: 'myStruct'

member: [1x1 ccs.containerobj]

C-130

Reference for the Properties of Embedded Objects

membname: {'iy' 'iz'}

memboffset: [0 24]

address: [40032 0]

storageunitspervalue: 28

size: 1

numberofstorageunits: 28

arrayorder: 'row-major'

From the property memoffset, you see that member iz of myStruct is 24
addresses from member iy, and from the start of the structure.

name

Description. Provides the name of the symbol or embedded object (mostly
they are the same thing) to which the object refers. Contains the name of the
function when the embedded object is a function.

Characteristics. ASCII character string that composes a valid C variable
name.

Range. Any valid C variable name that occurs in your project.

numberofstorageunits

Description. Reports the number of smallest addressable units necessary to
represent the symbol to which the object refers.

Characteristics. Reported in addressable units. Property
bitsperstorageunit tells you how many bits are in each addressable unit
— the smallest value supported by the processor. Combined with property
numberofstorageunits, you can determine the storage used by the symbol.

Range. Any number of addressable units up to the limit of memory on the
processor.

C-131

C Objects in Embedded IDE Link™ CC

numchannels

Description. Reports the number of RTDX communications channels
configured for the RTDX link. Includes both read and write channels and does
not depend on whether the channels are enabled.

Examples. As you did if you followed the RTDX tutorial in Getting Started
with RTDX, create a ticcs object, and then open two RTDX channels for
the object:

cc=ticcs('boardnum',boardNum,'procnum',procNum)

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

cc.rtdx.configure(1024,4);

cc.rtdx.open('ichan','w');

cc.rtdx.open('ochan','r');

cc.rtdx.enable;

get(cc,'rtdx')

RTDX Object:

Default timeout : 15.00 secs

Open channels : 2

Ch Name Mode

-- ---- ----

1 ichan write

C-132

Reference for the Properties of Embedded Objects

2 ochan read

Where the listing for the RTDX object shows two open channels, this is the
numChannels property value.

offset

Description. Specifies the starting position of the bitfield relative to bit 0 of
the address. For A value of zero indicates that the bitfield begins at bit 0.

Characteristics. offset is an integer specifying a number of bits. The
default value is zero.

outputvar

Description. An object created by Embedded IDE Link CC that represents
the output argument from a function.

Characteristics. A handle to an object.

Range. A handle to any valid object in Embedded IDE Link CC.

page

Description. When you get the properties of an object, the address comes
back in the format [address page]. In the address field for your object, page
specifies which memory page contains the symbol address. For processors that
do not use pages in memory, such as the C6701, the page value is always 0.

Characteristics. An integer that specifies the memory page for an address
in memory.

Range. From 0 to the maximum number of memory pages supported by
the processor.

Examples. Given a symbol in memory named ddat, after you create an
object to access ddat, you can get the properties for the object and see the
address format:

C-133

C Objects in Embedded IDE Link™ CC

ddat=createobj(cc,'ddat')

NUMERIC Object

Symbol Name : ddat

Address : [40072 0]

Wordsize : 64 bits

Address Units per value : 8 AU

Representation : float

Binary point position : 0

Size : [4]

Total address units : 32 AU

Array ordering : row-major

Endianness : little

Notice that the memory page value is 0 — the second value in the address
field [40072 0] in the example. Because this example processors a C6701
digital signal processor, the page property value is always zero — the C6701
processor does not support memory pages.

postpad

Description. Reports the number of bits of padding required at the end of the
memory buffer to fill the buffer. Determining the final numeric value stored
in memory ignores the added bits.

Characteristics. Double-precision value that specifies the number of added
bits.

prepad

Description. Reports the number of bits of padding required at the beginning
of the memory buffer to fill the buffer. Determining the final numeric value
stored in memory ignores the added bits.

Characteristics. Double-precision value that specifies the number of added
bits.

C-134

Reference for the Properties of Embedded Objects

procnum

Description. The number assigned by CCS to the processor on the board or
simulator. When the board contains more than one processor, CCS assigns a
number to each processor, numbering from 0 for the first processor on the first
board. For example, when you have two recognized boards, and the second has
two processors, the first processor on the first board is procnum=0, and the first
and second processors on the second board are procnum=1 and procnum=2.
This is also a property used when you create a new link to CCS IDE.

Range. From 0 for one processor to N-1, where N is the number of processors
that CCS recognizes as installed and configured on your machine.

Description. Contains the name of the register as used by the processor.
Note that this is not the same as a CPU register on the processor.

Characteristics. regname is a MATLAB array with no initial value nor
a default value.

Range. Any valid register used by your processor.

represent

Description. Contains a string that specifies the data type for the accessed
symbol. Memory locations consist of bits and bytes. The property value for
represent specifies to MATLAB how to interpret the data stored in memory
on the processor.

You can change property represent to change the access format. For
example, if an object has property represent = float and you change it to
represent = signed

set(obj,'represent','signed')

the data will be read as a signed integer. In addition, the data will be written
as a signed integer.

C-135

C Objects in Embedded IDE Link™ CC

Note Change the represent property of an object to float only if the word
size for the object is at least 32 bits.

For example, if the specified object is a 16-bit integer whose property
represent = signed, represent cannot be changed to float. For the data to
be accessed as a floating point number, it should be at least 32 bits in length.

Characteristics. A string that defines the data type for the variable — one of
the following strings applies:

• float— IEEE floating point representation, either 32 or 64 bits

• fract — fractional fixed-point data

• signed — two’s complement signed integers

• ufract — unsigned fractional fixed-point data

• unsigned — unsigned two’s complement integer data

Range. While MATLAB recognizes many different data types, C and the TI
processors are somewhat different. The tables provided here show the valid
data types (from property datatype) and the strings that appear for them as
the represent property value.

datatype Property
String represent Property Value

'double' 'float'

'single' 'float'

'int32' 'signed'

'int16' 'signed'

'int8' 'signed'

'uint32' 'unsigned'

'uint16' 'binary'

'uint8' 'binary'

'long double' 'float'

C-136

Reference for the Properties of Embedded Objects

datatype Property
String represent Property Value

'float' 'float'

'long' 'signed'

'int' 'signed'

'char' 'signed'

'unsigned long' 'signed'

'unsigned int' 'unsigned'

'unsigned char' 'binary'

'Q0.15' 'fract'

'Q0.31' 'fract'

Various TI processors restrict the sizes of the data types used by objects in
Embedded IDE Link CC. Shown in the next table, the processor families
restrict the valid word sizes for the listed data types.

represent
Property Value

C54 Processor
Word Size
Limits

C6x Processor Word Size
Limits

'float' 32, 64 bits 32,64 bits
'signed' 16, 32 bits 8, 16, 32, 40, 64 bits
'unsigned' 16, 32 bits 8, 16, 32, 40, 64 bits
'binary' 16, 32 bits 8, 16, 32, 40,64 bits
'fract' 16, 32 bits 8, 16, 32, 40, 64 bits

Using the properties of the objects, you change the word size by changing the
value of the storageunitspervalue property of the object. Note that you
cannot change the bitsperstorageunit property value which depends on the
processor and whether the object represents a memory location or a register.

Referrals. See also cast, convert.

C-137

C Objects in Embedded IDE Link™ CC

rtdx

Description. Specifies whether the link object has RTDX channels included
in the link. When the link has open RTDX channels, this property contains a
structure of cell arrays that detail the information about the channels — the
number of channels and the names of the channels.

Characteristics. Empty or an array of cell arrays containing strings and
values.

Examples. When you create a link, the default state is not to have RTDX
channels and the property rtdx is empty, as you see here:

cc=ticcs('boardnum',boardNum,'procnum',procNum)

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

Now, configure and open two RTDX channels to the processor:

cc.rtdx.configure(1024,4);

cc.rtdx.open('ichan','w');

cc.rtdx.open('ochan','r');

After creating the channels, displaying the link shows that the rtdx property
is no longer empty. It contains the names and number of channels available,
and the channel mode, either read or write:

get(cc,'rtdx')

RTDX Object:

C-138

Reference for the Properties of Embedded Objects

Default timeout : 15.00 secs

Open channels : 2

Ch Name Mode

-- ---- ----

1 ichan write

2 ochan read

Referrals. See also ticcs, enable, open.

rtdxchannel

Description. Provides the names of open RTDX channels for the link.

Characteristics. Alphanumeric strings using ASCII characters that define
the channel names.

Range. From 0 to the number of defined and open channels in your project.

size

Description. Defines the number of dimensions for the numeric array that
is accessed by the numeric object. The size property provides the same
information that function size provides in MATLAB.

Characteristics. size is a vector having as many elements as the number
of dimensions in the symbol represented by the object. Each element in the
vector reports the number of entries in that dimension.

Range. size can be a scalar greater than or equal to one, or a vector of
integers, each greater than or equal to one.

Examples. When you have a variable declaration in your code like

int x[3] [2] = {(1,2),(3,4),(5,6)};

the size property tells you about x if you create an object that accesses x.

x = createobj(cc,'x');

C-139

C Objects in Embedded IDE Link™ CC

get(x,'size')

ans =

[3 2]

so x represents a 3-by-2 array having six elements.

savedregisters

Description. Contains the list of registers whose contents are saved during
function processing. The list of registers is different for each processor, and
you can change the registers on the savedregisters list using addregister
and deleteregister. Note that you cannot delete the default registers for
a processor. You can delete only registers that you add.

Characteristics. An mxArray that contains the names of all registers on the
processor that are preserved during processing.

Examples. For the C54x family of signal processors, the default saved
registers are

AR1, AR6, AR7, and SP. Register SP is not required to be saved by the
processor but Embedded IDE Link CC requires that the contents of SP be
saved.

storageunitspervalue

Description. Describes how many storage units — addressable (AU) and
register (RU) — make up the accessed symbol.

Characteristics. Given in addressable units (AU or RU),
storageunitspervalue is an integer.

Range. storageunitspervalue is an integer equal to or greater than one,
up to the limit of your processor. This can have a value less than one in the
case of packing of the bits in the symbol.

C-140

Reference for the Properties of Embedded Objects

Examples. From the Function Call tutorial (“Tutorial — Using function
Objects and Function Calls” on page C-76), the object cfield returns the
following properties when you create an object to access the myStruct
member iz:

cfield = getmember(cvar,'iz') % Extract object from structure

ENUM Object

Symbol Name : iz

Address : [40056 0]

Wordsize : 32 bits

Address Units per value : 4 AU

Representation : signed

Binary point position : 0

Size : [1]

Total address units : 4 AU

Array ordering : row-major

Endianness : little

Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedprocessorC6x=4

get(cfield)

address: [40056 0]

bitsperstorageunit: 8

numberofstorageunits: 4

link: [1x1 ticcs]

timeout: 10

name: 'iz'

wordsize: 32

storageunitspervalue: 4

size: 1

endianness: 'little'

arrayorder: 'row-major'

prepad: 0

postpad: 0

represent: 'signed'

binarypt: 0

label: {1x5 cell}

value: [0 1 2 3 4]

C-141

C Objects in Embedded IDE Link™ CC

Requiring 4 addressable units (storage units) with 8 bits per storage unit
(property bitsperstorageunit = 8) and a size of 1, cfield requires 32 bits
of storage space in memory.

timeout

Description. Specifies how long Embedded IDE Link CC waits for an
operation to complete, or at least to return a status of complete. In some
cases, operations continue after the timeout expires, because the time period
depends on the status of the operation, not the actual completion.

Characteristics. A value in seconds.

Range. A value greater than zero. 10 s is the default value. The timeout
period for build is 1000 s.

Examples. In this example, the timeout period is 10 seconds for the new
object:

cc=ticcs('boardnum',boardNum,'procnum',procNum)

TICCS Object:
API version : 1.2
Processor type : TMS320C6711
Processor name : CPU_1
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

type

Description. Specifies the return type for a function in your project.

Characteristics. A string the contains a valid return type, such as a data
type or void.

C-142

Reference for the Properties of Embedded Objects

typelist

Description. Lists the type entries in a type object. When you construct a
ticcs object cc, it contains a type object cc.type with default entries void,
float, double, long, int, short, and char. After you add your typedefs to the
type object, typelist contains a listing of the types in the object.

Characteristics. An cell array of alphanumeric strings. The default entries
in typelist are void, float, double, long, int, short, and char

typename

Description. Lists the type names in a type object. When you construct a
ticcs object cc, it contains a default type object cc.type. After you add
your typedefs to the type object, typelist contains a list of the names of
the types in the object.

Characteristics. An mxArray of alphanumeric strings.

Examples. Add a type definition to a cc object. You add your typedef to the
type object that is part of the ticcs object:

cc=ticcs;

add(cc.type,'mytypedef','uint32')

ans =

type: 'uint32'

size: 1

uclass: 'numeric'

cc.type

Defined types : Void, Float, Double, Long, Int, Short, Char,

mytypedef

C-143

C Objects in Embedded IDE Link™ CC

typestring

Description. Describes the data type of the referent for the pointer object
accesses. typestring returns the data type for the referent as well as an
asterisk to indicate that the symbol is a pointer.

Examples. For a pointer object that points to a floating-point symbol, the
property value for typestring is float *. For a pointer to an integer, the
value is int *.

value

Description. Reports the values associated with labels in an enumerated
object.

Characteristics. Numbers, one or more, configured as a vector depending on
the number of entries.

Examples. Using the enumerated data type variable myEnum from the
link tutorial, create an object that accesses the labels and values for the
enumerated data variable iz:

cvar = createobj(cc,'myStruct')

STRUCTURE Object:

Symbol Name : myStruct

Address : [40032 0]

Address Units per value : 28 AU

Size : [1]

Total Address Units : 28 AU

Array ordering : row-major

Members : 'iy', 'iz'

cfield = getmember(cvar,'iz')

ENUM Object

Symbol Name : iz

Address : [40056 0]

Wordsize : 32 bits

Address Units per value : 4 AU

C-144

Reference for the Properties of Embedded Objects

Representation : signed

Binary point position : 0

Size : [1]

Total address units : 4 AU

Array ordering : row-major

Endianness : little

Labels & values : MATLAB=0, Simulink=1, SignalToolbox=2,

MatlabLink=3, EmbeddedprocessorC6x=4

The values for iz are 0, 1, 2, 3, and 4. In the value property, the values show
up as [0 1 2 3 4], a vector whose elements are the values.

wordsize

Description. Specifies the word size for the processor, and the referenced
symbol.

Characteristics. Depends on the processor architecture. Because this is fixed
on the processor, it is read only, set when you create an embedded object.

Range. For most processors, the word size can be from 8 to 64 bits, usually
8, 16, or 32.

C-145

C Objects in Embedded IDE Link™ CC

C-146

Index

IndexA
abbreviate property names 2-57
abstract class C-5
access properties 2-56
access, structure member 7-108
activate 7-2
add 7-4
addregister 7-7
address 7-10
address property C-120
address, read 7-176
animate 7-12
apiversion 2-64
apiversion property C-120
Archive_library 3-64
array, reshape 7-213
arrayorder property C-121
asynchronous scheduling 3-10

B
base class C-5
behavior C-6
binary data, write to memory 7-250
binarypt property C-122
bitfield object C-18
bitsperstorageunit property C-122
block limitations using model reference 3-65
boardnum 2-65
boardnum property C-122
boards, selecting 3-3
breakpoint, delete 7-85
build 7-13
build configuration

compiler options, default 3-59
custom 3-59
default 3-59

build configuration, new 7-156

C
C and library functions compared C-57
C280x/C28x3x hardware interrupt block 9-2
C280x/C28x3x Hardware Interrupt block 9-2
c281x hardware interrupt block 9-8
C6000 model reference 3-63
C6000 target preferences block 9-45
C6711 DSK

TLC debugging options 3-51
cast 7-17
CCS IDE objects

tutorial about using 2-2
CCS status 7-137
ccsappexe 2-65
ccsappexe property C-123
ccsboardinfo 7-21
cd 7-27
cexpr 7-29
channel, open 7-159
charconversion property C-123
class C-6
class diagram C-6
class, abstract C-5
class, base C-5
class, container C-6
cleanup 7-34
clear 7-35
close 7-36
Code Composer Studio

MATLAB API 1-3
code profiling 7-163
configuration parameters

pane 10-4
buildAction 10-23
Compiler options string: 10-18
configPILBlockAction 10-29
Export IDE link handle to base

workspace: 10-5
gui item name 10-12 10-31 10-33
IDE link handle name: 10-7

Index-1

Index

Inline run-time library functions 10-14
Interrupt overrun notification

function: 10-28
Linker options string: 10-20
overrunNotificationMethod 10-26
Profile real-time execution 10-8
profileBy 10-10
projectOptions 10-16
System stack size (MAUs): 10-22

configure 7-39
configure the software timer 9-49
constructor C-6
container class C-6
convert 7-41
copy 7-49
CPU clock speed 9-49
createobj 7-50
current CPU clock speed 9-49
custom build configuration 3-59
custom compiler options 3-59
custom data types C-108
custom type definitions C-108

D
Data Type Manager C-108
datatypemanager 7-69
debug point, insert 7-124

declare 7-83
default build configuration 3-59
default compiler options 3-59
delete 7-85

breakpoint 7-85
source file 7-85

delete breakpoint 7-85
deleteregister 7-88
deref 7-90
dereference pointer 7-90
diagram

object C-7
diagram, class C-6
dir 7-91
disable 7-92
discrete solver 3-45
display 7-93
DSP/BIOS

adding to generated code 3-54

E
Embedded IDE Link CC

code generation options 3-54
run-time options 3-54

Embedded IDE Link™ CC
listing link functions 2-52
use C6711 DSK blocks 3-5

Index-2

Index

embedded object properties
address C-120
apiversion C-120
arrayorder C-121
binarypt C-122
bitsperstorageunit C-122
boardnum C-122
ccsappexe C-123
endianness C-124
label C-126
link C-127
member C-128
membname C-129
memoffset C-130
name C-131
numberofstorageunits C-131
numChannels C-132
page C-133
postpad C-134
prepad C-134
procnum C-135
represent C-135
rtdx C-138
rtdxChannel C-139
storageunitspervalue C-140
timeout C-142
typestring C-144
value C-144
wordsize C-145

embedded objects
bitfield C-18
enum C-21
function C-42
numeric C-15
pointer C-24
renum C-33
rnumeric C-30
rpointer C-36
rstring C-39
string C-27
structure C-45
type C-51

enable 7-95
enabling interrupts 3-14
endianness property C-124
enum object C-21
equivalent 7-97
execute 7-98
execute program 7-217
execution in timer-based models 3-12
execution profiling

subsystem 4-14
task 4-12

export filters to CCS IDE from FDATool 5-1
select the export data type 5-8
set board selection options 5-15
set the Export mode option 5-4
set Variable names in C header file 5-6
set Variable names in processor symbol

table 5-6
exporting filters to CCS IDE from FDATool

tutorial 5-10

F
FDATool 5-1

See also export filters to CCS IDE from
FDATool

file, new 7-156

Index-3

Index

file, remove 7-211
file, save 7-221
filename property C-125
fixed-step solver 3-45
flush 7-99
function C-6
function argument

getinput 7-104
getoutput 7-111

function object C-42
using with declare C-56

function, resume 7-216
functions

library C-58
library and C C-57
overloading 2-61

G
GEL file, load 7-153
generate optimized code 3-54
generate_code_only option 3-54
get 7-101
get symbol table 7-225
get type definitions 7-113
getinput 7-104
getmember 7-108
getoutput 7-111
getting properties 2-58
gettypeinfo 7-113

H
halt 7-119
Hardware Interrupt block 9-14

I
Idle Task block 9-17
info 7-121
inheritance C-7

inline Signal Processing Blockset functions
option 3-54

input argument, equivalent 7-97
inputnames property C-125
inputvars property C-126
insert 7-124
instance C-7
instantiation C-7
interrupts

enabling 3-14
mapping 3-14

isenabled 7-128
isreadable 7-130
isrtdxcapable 7-134
isrunning 7-135
issues, using PIL 4-6
isvisible 7-137
iswritable 7-139

L
label property C-126
library and C functions compared C-57
library functions C-58
link filters properties

getting 2-59
link properties

about 2-62 2-64
apiversion 2-64
boardnum 2-65
ccsappexe 2-65
numchannels 2-65
page 2-66
procnum 2-66
quick reference table 2-62
rtdx 2-66
rtdxchannel 2-67
setting 2-59
timeout 2-68
version 2-68

Index-4

Index

link properties, details about 2-64
link property C-127
links

closing CCS IDE 2-28
closing RTDX 2-48
communications for RTDX 2-39
creating links for RTDX 2-36
details 2-64
introducing the function object tutorial C-77
introducing the tutorial for using links for

RTDX 2-31
loading files into CCS IDE 2-11
quick reference 2-62
running applications using RTDX 2-41
tutorial about using links for RTDX 2-30
working with your processor 2-13

list 7-143
list object 7-143
list variable 7-143
load 7-153

M
manage data types 7-69
mapping interrupts 3-14
matrix, read from RTDX 7-190
matrix, reshape 7-213
member property C-128
membname property C-129
memoffset property C-130

Memory Allocate block 9-20
Memory Copy block 9-26
memory, write 7-238
method C-7

function C-7
model execution 3-10
model reference 3-63

about 3-63
Archive_library 3-64
block limitations 3-65
modelreferencecompliant flag 3-66
setting build action 3-64
Target Preferences blocks 3-65
using 3-64

model schedulers 3-10
modelreferencecompliant flag 3-66
msgcount 7-155

N
name property C-131
new

build configuration 7-156
file 7-156
project 7-156

numberofstorageunits property C-131
numchannels 2-65
numChannels property C-132
numeric object C-15

Index-5

Index

O
object C-7

aggregation C-5
behavior C-6
class C-6
composition C-6
constructor C-6
function C-6
handle C-6
inheritance C-7
instance C-7
method C-7
property C-8
state C-8
structure C-8
ticcs 2-54

object diagram C-7
See also class diagram

object properties, get 7-101
object, instantiation C-7
object, read 7-176
object-based programming C-8
object-oriented programming C-8
objects

creating objects for CCS IDE 2-9
introducing the objects for CCS IDE

tutorial 2-2
selecting processors for CCS IDE 2-7
tutorial about using Automation Interface

for CCS IDE 2-2
offset property C-133
open channel 7-159
optimization, processor specific 3-54
outputvar property C-133
overloading 2-61

P
page 2-66
page property C-133

PIL block 4-6
PIL cosimulation

definitions 4-4
how cosimulation works 4-5
overview 4-3

PIL issues 4-6
pointer object C-24
pointer, derefence 7-90
postpad property C-134
prepad property C-134
process, halt 7-119
processor

general code generation options 3-52
processor configuration options

build action 3-54
generate code only 3-50
overrun action 3-55
system target file 3-49

processor function library. See TFL
processor information, get 7-121
processor registers, saved 7-7
processor specific optimization 3-54
processor status 7-135
processor, reset 7-212
processor, write 7-238
procnum 2-66
procnum property C-135
profile 7-163
profiling code 7-163
profiling execution

by subsystem 4-14
by task 4-12

program counter, position 7-114
program counter, restore 7-214
program file, load 7-153
program file, reload 7-209
program, run 7-217
programming

object-based C-8
object-oriented C-8

Index-6

Index

project generation
selecting the board 3-3

project, new 7-156
project, save 7-221
properties

abbreviating names 2-57
link properties 2-62
referencing directly 2-59
retrieving 2-56

function for 2-58
retrieving by direct property referencing 2-59
setting 2-56

properties, get 7-101
properties, setting 7-223
property C-8

charconversion C-123
filename C-125
inputnames C-125
inputvars C-126
offset C-133
outputvar C-133
savedregisters C-140
size C-139
type C-142
typelist C-143
typename C-143
wordsize C-145

property values
abbreviating 2-59

R
read

address 7-176
object 7-176

read data as binary 7-188
read data as hexadecimal 7-189
read register 7-201
readbin 7-188
readhex 7-189

readmat 7-190
readmsg 7-194
readnumeric 7-198
Real-Time Workshop solver options 3-45
Real—Time Workshop build options

generate_code_only 3-54
register, delete 7-88
registers, saved 7-7
regread 7-201
regwrite 7-205
reload 7-209
remove 7-211
remove file 7-211
renum object C-33
represent property C-135
reset 7-212
reshape 7-213
restart 7-214
restore program counter 7-214
resume 7-216
rnumeric object C-30
rpointer object C-36
rstring object C-39
rtdx 2-66
RTDX

isenabled 7-128
isrtdxcapable 7-134
message count 7-155
open channel 7-159
read message 7-194
readmat 7-190
set properties 7-223
writemsg 7-251

RTDX channel, flush 7-99
RTDX links

tutorial about using 2-30
RTDX message count 7-155
rtdx property C-138 to C-139
RTDX, disable 7-92
RTDX, enable 7-95

Index-7

Index

rtdxchannel 2-67
run 7-217

S
save 7-221
saved processor registers 7-7
savedregisters property C-140
selecting boards 3-3
set 7-223
set properties 2-56
set stack size 3-57
set visibility 7-235
size property C-139
solver option settings 3-45
stack size, set stack size 3-57
state C-8
stop process 7-119
storageunitspervalue property C-140
string object C-27
structure C-8
structure member, access 7-108
structure object C-45
structure-like referencing 2-59
subclass C-8

superclass C-8
superclass C-8

subclass C-8
symbol 7-225
symbol table, getting symbols 7-225
synchronous scheduling 3-12

T
Target Preferences blocks in referenced

models 3-65
TFL

using with Embedded IDE Link™ CC 3-61
ticcs 2-54 7-227
timeout 2-68

timer, configure 9-49
timer-based models, execution 3-12
timer-based scheduler 3-12
timing 3-10
tutorials

embedded objects and HIL C-76
function calls C-76
links for RTDX 2-30
objects for CCS 2-2

type definitions, get 7-113
type object C-51
type property C-142
typedefs C-110

about C-108
adding C-110
managing C-110
removing C-110

typelist property C-143
typename property C-143
typestring property C-144

U
use declare with function objects C-56

V
value property C-144
version 2-68
view CCS 7-137
visibility, setting 7-235
visible 7-235

W
wordsize property C-145
write 7-238
write binary data to memory 7-250
write register 7-205
writebin 7-250
writemsg 7-251

Index-8

	toc
	Getting Started
	Product Overview
	Components of Embedded IDE Link CC Software
	Automation Interface
	Project Generator
	Verification
	Processor in the Loop Cosimulation
	Execution Profiling

	Product Features Supported for Each Processor Family

	Configuration Information
	Requirements for Embedded IDE Link CC Software

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Functions for Working With Embedded IDE Link CC
	Methods for Working with ticcs Objects in Embedded IDE Link CC s
	Embedded IDE Link CC Methods for Embedded Objects
	Running Code Composer Studio Software on Your Desktop — Visibili
	Running the Interactive Tutorial

	Selecting Your Processor
	Creating and Querying Objects for CCS IDE
	Loading Files into CCS
	Working with Projects and Data
	Working with Embedded Objects
	Using list
	Using read and write
	Using cast, convert, and size
	Using getmember

	Closing the Links or Cleaning Up CCS IDE

	Getting Started with RTDX
	Introducing the Tutorial for Using RTDX
	Functions From Objects for CCS IDE
	Functions From the RTDX Class

	Creating the ticcs Objects
	Configuring Communications Channels
	Running the Application
	Closing the Connections and Channels or Cleaning Up
	Listing the Functions for Embedded IDE Link CC software

	Constructing ticcs Objects
	Example — Constructor for ticcs Objects

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example — Setting Object Property Values at Construction

	Setting Property Values with set
	Example — Setting Object Property Values Using set

	Retrieving Properties with get
	Example — Retrieving Object Property Values Using get
	Example — Displaying Object Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example — Direct Property Referencing in Links

	Overloaded Functions for ticcs Objects
	ticcs Object Properties
	Quick Reference to ticcs Object Properties
	Details About ticcs Object Properties
	apiversion
	boardnum
	ccsappexe
	numchannels
	page
	procnum
	rtdx
	rtdxchannel
	timeout
	version

	Project Generator
	Introducing Project Generator
	Project Generation and Board Selection
	About the CCSLinkLib Blockset
	Schedulers and Timing
	Timer-Based Versus Asynchronous Interrupt Processing
	Synchronous Scheduling
	Asynchronous Scheduling
	Mapping and Enabling Interrupts in Generated Code

	Asynchronous Scheduler Examples
	Before
	After
	Algorithm Inside the Function Call Subsystem Block

	Uses for Asynchronous Scheduling
	Idle Task
	Hardware Interrupt Triggered Task

	Multitasking Scheduler Examples
	Three Odd-Rate Tasks Without Preemption and Overruns
	Two Tasks with the Base-Rate Task Overrunning, No Preemption
	Two Tasks with Sub-Rate 1 Overrunning Without Preemption
	Three Odd-Rate Tasks with Preemption and No Overruns
	Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rat
	Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overrun
	Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-

	Project Generator Tutorial
	Creating the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Software Configuration Parameters for Your M
	Setting Solver Parameters
	Setting Real-Time Workshop Code Generation Parameters
	Setting Embedded IDE Link CC Parameters
	Building Your Project

	Setting Real-Time Workshop Software Parameters for TI Processors
	Setting Model Configuration Parameters
	Target File Selection
	System target file

	Build Process
	Custom Storage Class
	Generate code only

	Report Options
	Create Code Generation report
	Launch report automatically

	Debug Pane Parameters
	Optimization Pane Parameters
	Embedded IDE Link CC Pane Parameters
	Runtime Options
	Build action
	Interrupt overrun notification method
	Interrupt overrun notification function
	Overrun Indicator and Software-Based Timer
	Project Options
	Compiler options string
	Linker options string
	System stack size (MAUs)
	Code Generation
	Link Automation

	Embedded IDE Link CC Default Project Configuration — custom
	Default Compiler Build Options in custom

	processor Function Library and Embedded IDE Link CC
	TFL Replacement Functions
	Enabling TFL for Code Generation

	Model Reference and Embedded IDE Link CC
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference with Embedded IDE Link CC
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring processors to Use Model Reference

	Verification
	What Is Verification?
	Using Processor in the Loop
	Processor-in-the-Loop Overview
	PIL Block
	PIL Issues
	Data Types Must Be The Same Size on the Host and Processor
	Buses and MUX Signals Not Supported at PIL Component Boundary
	Signals with Custom Storage Classes Not Supported at PIL Compon
	Continuous Sample Times Not Supported
	PIL with DSP/BIOS Enabled Does Not Support System Stack Profilin
	Real-Time Workshop grt.tlc-Based Targets Not Supported

	Creating and Using PIL Blocks

	Real-Time Execution Profiling
	Overview
	Profiling Execution by Tasks
	Profiling Execution By Subsystems

	System Stack Profiling
	Overview
	Profiling System Stack Use

	Exporting Digital Filters From FDATool to CCS IDE
	Introducing FDATool
	Guidelines on Exporting Filters from FDATool to Code Composer St
	Selecting the Export Mode
	Cautions Regarding Writing Directly to Memory
	Allocating Sufficient or Extra Memory for Filter Coefficients
	Overwriting Old Filter Coefficients with Updated Coefficients

	Variables and Memory Necessary for Filter Export
	Selecting the Export Data Type
	Recommended Procedure for Selecting Export Data Type

	Tutorial — Exporting Filters from FDATool to CCS IDE
	Descriptions of the Two Tutorial Tasks
	Setting Up for the Tutorial
	Task 1 — Export Filter by Generating an ANSI C Header File
	Step 1 — Open FDATool
	Step 2 — Open the Export to Code Composer Studio(tm) IDE Dialog
	Step 3 — Set the Export Mode
	Step 4 — Name the Filter Coefficient Variables
	Step 5 — Select a Data Type
	Step 6 — Select a Board
	Step 7 — Generate the ANSI Header File
	Step 8 — Export the Filter by Generating a Program File
	Contents of the ANSI Header File Generated in Task 1

	Task 2 — Export Filter by Writing Directly to Processor Memory
	Step 9 — Tune Your Filter in FDATool
	Step 10 — Set the Export Mode
	Step 11 — Input Filter Variable Names
	Step 12 — Set All Other Parameters for Export as in Task 1
	Step 13 — Load the Program File
	Step 14 — Export by Writing Directly to Processor Memory
	Step 15 — Continue Optimizing Filter Performance
	Where to Find More Information

	Function Reference
	Operations on Objects for CCS IDE
	Operations on Objects for RTDX
	Data Manipulation
	Hardware-in-the-Loop Processing

	Functions — Alphabetical List
	Support Coemulation and OMAP

	Block Reference
	C280x/C28x3x DSP Chip Support (ccslinklib_c280x)
	C281x DSP Chip Support (ccslinklib_c281x)
	C5xxx DSP Chip Support (ccslinklib_c5xxx)
	C6xxx DSP Chip Support (ccslinklib_c6xxx)
	Target Preferences (ccslinklib_tgtpref)

	Blocks — Alphabetical List
	Embedded IDE Link CC Configuration Parameters
	Embedded IDE Link CC Pane
	Embedded IDE Link CC Overview
	Export IDE link handle to base workspace
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	IDE link handle name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Inline run-time library functions
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Project options
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Linker options string
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification method
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification function
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	PIL block action
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time to complete IDE operations (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Supported Hardware
	Supported Platforms for Embedded IDE Link CC
	Supported Hardware and Simulators
	Product Features Supported by Each Processor or Family
	OMAP Coemulation Support
	Custom Hardware Support

	Supported Versions of Code Composer Studio

	Reported Limitations and Tips
	Reported Issues Using Embedded IDE Link CC
	Function Call Support for Different Compiler Options
	Issues When You Use Other Compiler Settings

	Function Calls on Functions That Use Global Variables
	Demonstration Programs Do Not Run Properly Without Correct GEL F
	Issues Using USB-Based RTDX Emulators and the C6416 DSK and C671
	References

	Error Accessing type Property of ticcs Object Having Size Greate
	Changing the represent Property of an Object
	Changing Values of Local Variables Does Not Take Effect
	Code Composer Studio Cannot Find a File After You Halt a Program
	File Not Found
	Defining a Search Path for Source Files
	To Specify Search Path Directories

	C54x XPC Register Can Be Modified Only Through the PC Register
	Working with More Than One Installed Version of Code Composer St
	Workaround

	Changing CCS Versions During a MATLAB Session
	createobj and address Return Inconsistent Page Information on C5
	MATLAB Hangs When Code Composer Studio Cannot Find a Board
	Different Read Techniques Appear to Return Different Values
	Using Function Call with C28x Processors
	RTDX Demos Do Not Run on C6727 PADK

	Objects in Embedded IDE Link CC
	Introduction to Objects
	Some Object-Oriented Programming Terms
	Definitions of Object-Oriented Terms
	Determining an Object Class

	About the Relationships Between Objects
	Class Diagrams for Embedded IDE Link CC

	Numeric Objects — Their Methods and Properties
	Properties of Numeric Objects
	Methods of Numeric Objects

	Bitfield Objects — Their Methods and Properties
	Properties of Bitfield Objects
	Methods of Bitfield Objects

	Enum Objects — Their Methods and Properties
	Properties of Enum Objects
	Methods of Enum Objects

	Pointer Objects — Their Methods and Properties
	Properties of Pointer Objects
	Methods of Pointer Objects

	String Objects — Their Methods and Properties
	Properties of String Objects
	Methods of String Objects

	Rnumeric Objects — Their Methods and Properties
	Properties of Rnumeric Objects
	Methods of Rnumeric Objects

	Renum Objects — Their Methods and Properties
	Properties of Renum Objects
	Methods of Renum Objects

	Rpointer Objects — Their Methods and Properties
	Properties of Rpointer Objects
	Methods of Rpointer Objects

	Rstring Objects — Their Methods and Properties
	Properties of Rstring Objects
	Methods of Rstring Objects

	Function Objects — Their Methods and Properties
	Properties of Function Objects
	Methods of Function Objects

	Structure Objects — Their Methods and Properties
	Properties of Structure Objects
	Methods of Structure Objects
	Working with Structure Objects

	Type Objects — Their Methods and Properties
	Properties of Type Objects
	Methods of Type Objects

	Constructing Objects That Access Bitfields
	Creating function Objects
	When to Use declare to Provide the Function Declaration
	Differences Between Objects for Library Functions and C Function
	Library Functions

	Examples of Creating Function Objects
	Run a Standard C Function
	Run a Library Function
	Run a Function That Has a Custom Type Definition in the Prototyp
	Run a Function Generated by Real-Time Workshop
	Run a Function That Has Vector Inputs

	Creating Type Objects
	Working with Type Definitions in Projects
	To Add a Type Definition to an Existing ticcs Object

	Tutorial — Using function Objects and Function Calls
	Introducing the Tutorial
	Global Functions for CCS IDE — No ticcs Object Required
	Embedded IDE Link CC Functions for Working with Embedded Objects
	Embedded IDE Link CC Functions for Working with Embedded Functio
	Running the Interactive Tutorial

	To Run the Hardware-In-The-Loop Tutorial
	Stopping and Saving the Tutorial Program

	Select Your Processor and Load the Tutorial Project
	Initialize the Embedded C Variables and Use read and write
	Use read, write, cast, and convert with Objects
	Construct a function Object
	Use Methods That Work with Function Objects
	Construct Different Objects and Work with Them
	Close The Tutorial and Clean Up

	Managing Custom Data Types with the Data Type Manager
	Adding Custom Type Definitions to MATLAB
	To Add a Typedef to MATLAB

	Reference for the Properties of Embedded Objects
	Property Reference Format and Contents
	Functions
	address
	apiversion
	arrayorder
	binarypt
	bitsperstorageunit
	boardnum
	ccsappexe
	charconversion
	endianness
	filename
	inputnames
	inputvars
	label
	link
	member
	membname
	memboffset
	name
	numberofstorageunits
	numchannels
	offset
	outputvar
	page
	postpad
	prepad
	procnum
	represent
	rtdx
	rtdxchannel
	size
	savedregisters
	storageunitspervalue
	timeout
	type
	typelist
	typename
	typestring
	value
	wordsize

	Index

	tables
	File Types and Extensions Supported by add and CCS IDE
	Word Size Limits for Supported Processors
	C54x Family Input Argument Storage Allocation
	C6000 Family Input Argument Storage Allocation
	Examples of Address Property Values
	Examples of Address Property Values
	File Types and Extensions Supported by new and CCS IDE
	Examples of Address Property Values
	Examples of Address Property Values
	C280x Peripheral Interrupt Vector Values
	C281x Peripheral Interrupt Vector Values
	Processor Family Supporting Embedded IDE Link CC Components and
	The Base Classes
	The Subclasses
	Other Classes

